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ABSTRACT 

A model of the additive-pulse modelocked (APM) laser is developed, with an em- 

phasis on nonlinear dynamics. The APM laser has been traditionally used as a 

stable, pulsed light source, with multiple regions of instability that hamper useful 

operation. Many of these instabilities are deterministic, resulting from large levels 

of nonlinearity, and can be exploited if understood. In this thesis, the different 

elements of a typical APM laser are studied, and their effects incorporated into 

a four-equation iterative model. The essentials of nonlinear dynamics are then 

presented, as tools for identifying and characterizing deterministic instabilities. 

The APM model is then used to simulate the laser under conditions of high non- 

linearity, giving rise to quasiperiodicity, period-doubling, crises, and chaos. The 

chaotic regions of operation are characterized by embedding dimension and largest 

lyapunov exponent, and some sample attractors are plotted in three dimensions. 

The identification of the period-doubling route to chaos, the Lyapunov exponent 

quantification of the chaos, and the proof of quasiperiodicity and crisis behavior all 

represent new accomplishments and valuable insight into the APM laser dynamics. 
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Chapter 1 

Introduction 

1.1    Historical Perspective 

Mode-locked lasers have played an increasingly important role in scientific study in 

the past few decades. The predictable generation of ultrashort optical pulses has 

made possible the probing of ultrafast processes in semiconductors, the near delta- 

function excitation of optically absorbing materials, and ultrafast spectroscopy. As 

a result, mode-locked lasers undergo constant scrutiny for the purposes of better 

understanding, improved performance, and more robust control. 

One common configuration called the additive-pulse mode-locked (APM) laser, 

was invented in 1984 by Mollenaeur and Stolen [1] under the name of the soliton 

laser. Since then, this same cavity configuration has been extensively studied and 

perfected. It has been found that this type of laser also operates in regimes that do 

not support solitons, and a more inclusive interferometric model has been adopted 

to describe this laser. With all of the efforts in perfecting the APM laser however, 

the more complicated, unstable nonlinear behavior has only recently attracted 

significant interest [2, 3].   Currently, a more detailed study of APM dynamics is 



still lacking, and could provide some important clues to the limited stability of the 

laser itself. This thesis develops an iterative model to describe the APM operation, 

and studies the behavior of this model under several parameter variations. The 

results can aid in future APM designs, and help researchers to either exploit or 

avoid more complicated dynamics in the APM output. 

1.2    Organizational Outline 

Chapter 2 discusses the general design and physical cavity specifications of the 

APM laser. The chapter then studies the physical processes which form the basis 

for APM laser operation, and the combination of these processes to form mod- 

elocked pulses. Based upon the interferometric model of the APM laser, four 

steady-state equations are then developed to express the propagation of pulses 

through the laser. 

Chapter 3 begins by explaining the fundamentals of nonlinear dynamics. It 

explains the concepts of bifurcations, chaos, and strange attractors. This chapter 

also addresses iterative mappings, routes to chaos, and the phase-space reconstruc- 

tion of attractors. Much of this' introductory development follows Strogatz [17], 

and the interested reader can look there for a more detailed treatment. The quan- 

titative measures of fractal dimension and Lyapunov exponents are presented, with 

practical analysis methods as they will relate to the APM laser. 

The APM model is revisited in Chapter 4, where the original, stable, steady- 

state laser of Chapter 2 is studied and verified. Next, the APM equations are used 

to demonstrate the more complicated dynamics of this laser, including period-two 

and greater behavior as well as chaos. The analytical techniques developed in 

Chapter 3 are then used to better characterize the APM dynamics. 



Finally, Chapter 5 presents approximations and limitations of the APM model 

as developed in this thesis. This chapter also discusses future applications of this 

work, including several experimental ideas for improved APM performance. 



Chapter 2 

The Additive-Pulse Modelocked 

Laser 

2.1    An Introduction to Modelocking 

Modelocking methods can in general be classified into one of two categories: active 

and passive. The active case typically refers to driven lasers, where some kind of 

intracavity element modulates the optical loss with some multiple of the round-trip 

cavity time. As a result, pulses form which pass through the modulator during 

a peak in the transmission temporally narrow until they experience minimal loss 

from the modulator. Equivalently, in the frequency domain, each of the concurrent 

longitudinal modes of the laser acquires modulation sidebands which, when the 

modulator operates at some harmonic of the cavity frequency, overlap with and 

injection lock neighboring modes. As a result, most of the longitudinal modes lock 

together to "mode-lock" the laser. 

In contrast, passive modelocking involves the use of some intracavity element 

which passively favors pulsed operation. For example, several passive schemes uti- 



lize a saturable absorber, which acts as loss for low-intensity (CW) light, but satu- 

rates for high-intensity pulses. Other techniques utilize special material properties 

or particular cavity configurations to encourage pulsing. The Kerr lens modelock- 

ing technique, for example, relies on the optical Kerr effect to form a lens within 

the gain medium which varies in strength for low or high-intensity fields. The 

laser cavity is then designed with the help of apertures to favor the high-intensity 

case, so as to encourage pulsed behavior. In general, passive modelocking tech- 

niques generate shorter pulses, because material properties generally act on faster 

timescales than active modulation electronics. 

The additive-pulse modelocked (APM) laser falls into the passive category, 

because it relies on the process of self-phase modulation (SPM) within an optical 

fiber to favor pulses. In addition, this technique utilizes two coupled cavities: the 

main cavity contains the gain and tuning elements which form the laser oscillator, 

and the external cavity houses an optical fiber which provides the SPM. A fraction 

of the light from each pulse in the main cavity couples to the external cavity, obtains 

a phase chirp while traveling through the fiber due to SPM, then interferometrically 

recombines with the main cavity pulses to form narrower, compressed pulses. The 

remainder of this chapter presents a typical APM laser design in detail, including 

a mathematical examination of the physical processes just summarized, which 

connect SPM with short pulse generation. 

2.2    The Laser Cavity 

A schematic of the NaCl additive-pulse modelocked (APM) laser is shown in Fig- 

ure 2.1. The laser consists of main and external cavities, each ~ 187.5 cm in 

length, to establish an 80 MHz output pulse repetition rate. The main cavity con- 



sists of the NaCl gain medium, birefringent tuner plate (BTP), focusing optics, a 

high reflector on one end, and an output coupler on the other. The NaCl crystal 

is ~ 1.75 mm thick, and mounted at Brewster's angle (~ 57 °) on a copper cold 

finger, held at 77 °K to prevent thermal degradation of the active defects in the 

crystal. Two / = 5 cm lenses are used to form a very tight (~ 10/^m) beam radius 

in the gain medium. The BTP is a 0.3 mm thick crystal quartz optic, used both 

to wavelength tune and bandwidth-limit the laser's output pulse spectrum. 

The external cavity, delimited by the main cavity output coupler on one end 

and its own high reflector on the other, contains a short length of optical fiber. 

We used Corning Corguide dispersion-shifted (D = 0 at A = 1.55/im) fiber, with 

a core diameter of ~ 10//m. Because of this small core diameter, the light focused 

into the fiber attains high intensities, and experiences a nonlinear phase shift upon 

propagation. At each end of the fiber, 5 mm diameter AR-coated coupling spheres 

help to mode-match the optical mode of the external cavity to that in the fiber 

core. Index-matching gel fills the gap between the coupling sphere and fiber, to 

minimize reflection losses at the fiber ends. The external cavity high reflector is 

mounted on a PZT translator, in order to dynamically adjust the length of the 

external cavity, and thus control the relative phase between the main and external 

cavities. 

Using ABCD matrix formalism, the beam waist can be determined everywhere 

within the main cavity (see Appendix A). This not only confirms the stability of the 

cavity, but also yields the beam waists in the gain and at the output coupler. These 

parameters are essential to numerically simulating the laser behavior, described 

later in Section 2.5. The results of the ABCD analysis are shown in Figure 2.2. 

The lenses surrounding the NaCl crystal have been positioned quite close to 
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of cavity location as calculated by an ABCD matrix evaluation, and (b) gives the 
corresponding schematic representation of the cavity 
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the crystal, in order to generate the tight, 10 /im beam waist inside the gain. This 

positioning, shown in Figure 2.2 b, creates a cavity near the edge of stability, which 

additionally generates the large, ~ 5 mm output beam diameter. An experimental 

NaCl APM laser can easily be operated in this regime, by carefully adjusting 

the lenses as close as possible to the gain. These cavity dimensions, particularly 

the tight beam waist in the gain, enhance the complicated nonlinear dynamics 

explored in Chapter 4, and provide a large parameter space for the observation 

of laser bifurcations and chaos. Moreover, the knowledge that a tight gain beam 

waist provides such a large parameter space can assist future APM cavity design, 

especially toward encouraging complicated nonlinear output. Several other ways of 

accomplishing this enlarged parameter space exist, including the use of very short 

optical fiber in the external cavity, or different focusing lenses in the main cavity, 

but the simple cavity alignment used in Figure 2.2 is most easily implemented. 

2.3    Theory 

2.3.1    The NaCl Laser 

The APM laser has two coupled cavities, as described in section 2.2 above. The 

main cavity is essentially an "ordinary" laser, in the sense of being a simple optical 

oscillator, and is responsible for providing laser output in the 1.5-1.7 fim range. 

The gain medium is a NaCl crystal, containing intentional defects called color 

centers. The fundamental building block of color centers in alkali halides is the 

F-center, an electron trapped in an anion vacancy. An F^-center is an F center 

adjacent to another anion vacancy without a trapped electron. The particular 

color center in the NaCl lattice is the F^iO-j" defect, which involves an F^ center 
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adjacent to an O2- substitutional impurity (replaces a Cl~ ion) [4, 5, pp. 8,23]. 

An energy band diagram for the NaCl crystal with the F^iO^ defect con- 

tains states resulting from the allowed energies of the trapped F center electron, 

combined with vibronic states due to the NaCl lattice. Using the configurational 

coordinate model [6, 7], the NaCl gain medium can be shown to act as a 4-level 

system [5, pp. 10-17] (see Figure 2.3). The radiative lifetime of the system is r2 

while T\ and r3 characterize very fast, nonradiative transitions. The actual values 

of these lifetimes will be considered in Section 2.5.3, after a detailed analysis of 

the gain in Section 2.4.3. 

1  j     ii 

Absorption Emission 
x2 1 

       x3 

Figure 2.3: A Four-level Energy Band Schematic 

2.3.2    Self-Phase Modulation 

In almost any material, under conditions of high electric field, the polarization 

response of the material to the field will be at least weakly nonlinear. The polar- 

ization (or, more specifically, the susceptibility) can then be expressed in a series 

expansion: 

P = eo(Xi + X2E + x3EE + • • -)E (2.1) 

Under this expansion, the first (xi) component accounts for all of linear optics, the 

second term for sum and difference frequency generation and Pockel's effect, while 
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the third term (^3) accounts for phenomenon like third-harmonic generation and 

self-phase modulation. Only materials with non-centrosymmetric crystal structure 

can exhibit xi effects, such as second-harmonic generation. Third-harmonic gener- 

ation, on the other hand, is possible in almost all materials, but for any appreciable 

effect requires precise phase matching conditions on the optical k-vectors, which 

are rarely satisfied. 

Unlike third-harmonic generation, self-phase modulation (SPM) is a commonly 

observed \z effect, since it does not require any explicit phase-matching efforts. 

With SPM, the polarization leads to an intensity-dependent index of refraction 

(Ioc|£|2): 

n(I) = n0 + n2I (2.2) 

n0 is the usual (linear) index of refraction, and the n2 value is usually positive 

and quite small (3.2 x 10~16cm2/W in fused silica [8, pg. 201]), so this effect is 

not commonly observed under terrestrial conditions. In the case of optical fibers, 

an optical field can easily be large enough to induce SPM, because the small fiber 

core diameter leads to relatively high intensities. 

When a pulse experiences SPM, the leading and trailing edges of the pulse 

travel faster then the center of the pulse, since the center has a larger n(I), and 

therefore a smaller phase velocity, vp = c/n. For this reason, the optical carrier 

wave on the leading side of the pulse is stretched (frequency decreased), while the 

wave is compressed (frequency increased) on the trailing edge of the pulse, creating 

a monotonically increasing frequency "chirp" across the entire pulse. 

Examining the effect of SPM on a Gaussian pulse envelope: 

E(t) = E0e-
at2   or   I(t) = he'2«* (2.3) 
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In traveling a length L, this pulse would normally accumulate phase as 

e-*L = e (2.4) 

while SPM would add the additional phase 

-M = c~3^)n2l{t) e J * — e (2.5) 

Since the additional phase depends only on the intensity of the pulse, phase will 

accumulate linearly with the distance traveled. Prom this expression of the addi- 

tional SPM phase, the frequency chirp is given by 

x  u\      d XAU\     2im2LdI(t) M«) = JtW) = — -lr (2.6) 

where -^ = (—4at)e~2at2. This relationship between a Gaussian pulse and the 

chirp due to SPM is seen in Figure 2.4. The central region of the pulse acquires 

essentially linear phase. 

Pulse Envelope y—N^     m) 

Frequency Chirp 

Figure 2.4: A Gaussian Pulse and SPM-induced Phase Chirp 

The optical fiber plays a special, nonlinear role in the APM laser. The external 

cavity is passive, and optical pulses are simply guided through fused silica, then 

reinjected back into the main cavity. Because of the small core diameter of the 

fiber however, SPM becomes significant, and each pulse acquires a phase chirp. 

Section 2.3.3 describes how this phase chirp contributes to modelocked behavior. 
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2.3.3    Pulse Shortening and Steady State 

Any laser oscillator contains some noise, from spontaneous emission in the gain to 

stray optical radiation or even mechanical vibration perturbing the laser cavity. It 

is these same noise sources that make laser oscillation, and especially modelocked 

operation, possible. When the laser is first "turned on," i.e., the gain medium is 

excited, but no laser oscillation is present, a single noise photon will pass through 

the cavity with just the right alignment to cause the cascade of stimulated emission 

which forms the laser's output. In the case of modelocked operation, essentially 

the same process occurs, but the cavity has been designed to favor pulses. 

In the APM laser, for example, a noise spike from the main cavity will enter the 

external cavity fiber and obtain a chirp. When this small phase-chirped pulse from 

the external cavity strikes the output coupler of the main cavity, it interferometri- 

cally combines with the original, main cavity noise spike (pulse). Figure 2.5 shows 

a sample result of the combination process. Because the chirped pulse has faster 

and slower frequency components on its wings as compared to the center, when 

properly phase adjusted it will destructively interfere with the main cavity pulse 

on the wings, but constructively interfere at the peak. This pulse will repeatedly 

circulate in the main cavity, become amplified, and be reinjected into the external 

cavity, each time getting temporally shortened. Thus, the self-phase modulation 

of the optical fiber in the external cavity of the APM laser will help to produce 

short, modelocked pulses. 

A steady state is established when the pulse shortening effect of the SPM is 

balanced by spectral filtering and dispersion in the APM cavity. As explained by 

the uncertainty principle, overall spectral narrowing will in general be accompa- 

nied by temporal broadening, and vice-versa. The familiar Heisenberg uncertainty 
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^ Main Cavity External Cavity    ^ 

Output Coupler 

^M \£^ 

Figure 2.5: A schematic of interferometric recombination of APM Pulse intensities: 
the main cavity pulse with no phase chirp combines with the SPM-chirped control 
cavity pulse (shown with real and imaginary field components), to produce an 
mterferometrically compressed pulse 

relation 

AEAt > ft/2 AuAt > 
A-K 

(2.7) 

relates a pulse's spectral width Av to its temporal duration r. Thus, the band- 

width of the filtering process in the main cavity ultimately determines the shortest 

achievable modelocked pulsewidths. This filtering can arise from a number of pro- 

cesses, but it generally involves a tuning element (such as a birefringent tuner 

plate), the finite gain bandwidth of the NaCl crystal, or simply uncompensated 

group velocity dispersion within the laser cavity. 
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2.4    Modeling 

2.4.1    Overview 

A model of the APM laser which incorporates the above concepts relies upon 

the combination of the main and external cavity pulses at the output coupler, as 

defined in Figure 2.6. The incident and reflected field amplitudes on either side of 

R 

4    Main Cavity    , 
,a2 fc External Cavity    fc 

Output Coupler 

Figure 2.6: A Schematic of the Field Amplitudes in the APM Laser 

the output coupler can be simply related through the reflection and transmission 

coefficients of the output coupler: 

6i   =   a!\/ß + a2V/(l-i?) (2.8) 

b2   =   ai]/(l-R)-a2VR (2.9) 

where R is the intensity reflectivity of the output coupler. The elements of the 

main and external cavities will determine the relationships between a\ and b\, 

and a2 and b2. Sections 2.4.2 and 2.4.3 will describe the function of the main 

cavity, and Section 2.4.4 will formulate this into a main cavity operator. Similarly, 

Section 2.4.5 will formulate the effects of SPM on the pulses defined in Figure 2.6, 

and express this as an external cavity operator. These operators, combined with 

(2.8) and (2.9), will form a complete model of the APM laser's behavior. 
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2.4.2    Spectral Filtering 

The main cavity contains the filtering mechanism and the laser gain. Filtering in 

the laser of Figure 2.1 is performed both by a birefringent tuner plate (BTP), and 

the finite gain bandwidth of the NaCl crystal. We can consider both of these in 

turn. 

A schematic of the intracavity BTP, displayed in Figure 2.7, shows the relevant 

BTP parameters: 6, the angle formed by the surface of the plate and the cavity 

optic axis, and (f), the angular deviation of the plate's extraordinary axis a from 

vertical when rotated around an axis normal to and passing through the center of 

the plate. 

x 
A 

7 

Figure 2.7: An Intracavity Birefringent Tuner Plate 

A detailed analysis of tuner plate transmission as a function of orientation 

was performed elsewhere, to obtain the following expression for the TM-polarized 

intensity versus wavelength [9], 

IT(X)   =   l-sin2(2</>) 
no — no cos2 0 

X 

sin 

(no — cos2 (j) cos2 0)2 

id Jne[l + cos2öcos2</>(^-^)] n0 (2.10) 
A 1 [1 - cos2 6 (sg* + sg4 j]i/2      [1 - £2§p]i/2 

where n0 and ne are the ordinary and extraordinary indices of refraction for the 
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birefringent plate (crystalline quartz in this case), respectively, and t is the plate 

thickness. A typical BTP response function is shown in Figure 2.8 for t = 1.75 

mm. 

175 200 

v (THz) 
275 

Figure 2.8: Typical BTP Transmitted Intensity Versus Wavelength 

Given that the BTP is positioned in the laser cavity at Brewster's angle, 

tan 6 B = n 9B = 56.8° (2.11) 

the TM-polarized light will experience no amplitude loss due to Fresnel reflections. 

Also, given the 8 Brewster surfaces per round trip in the main cavity, we can assume 

that the surviving TE component of the intracavity laser mode is negligible. Thus, 

(2.10) is the (one pass) frequency response of the main cavity. 

The bandwidth of the NaCl crystal also contributes to filtering in the main cav- 

ity. Due to the coupling of the NaCl crystal's lattice vibrations with the F-center's 

unperturbed energy band structure, the gain emission spectrum is Gaussian in 

shape [5]. Given a gain bandwidth of bv = 45 THz [10] centered at u0 = 1.875 

THz (1.60 jum), the normalized gain versus frequency can be expressed as 

£(j,) = e-41n2(i/-1/0)
2/^2 

(2.12) 

This gain spectrum is shown in Figure 2.9. 
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Figure 2.9: The NaCl Gain Spectrum 

Modeling the filtering of both the BTP and the gain can then be achieved 

by taking the Fourier transform of some input pulse, p(t), multiplying by both 

frequency responses, (2.10) and (2.12), then taking the inverse Fourier transform. 

Thus, the main cavity filter operator T becomes 

T 
1    r°° r r°° 

(p(t)) = — /     ejutIT(2TT C/U)G{U/2TT)   /     e-
jwtp(t)dt du (2.13) 

2/K J—oo LJ—OO 

The combined filter response, IT(2TT c/u)G(u/2n), is shown in Figure 2.10 

o 
!/) 
t/J 0 8 3 m 

0 6 
S-i 

H 
X) U 4 

O) 
N 

'S 0 .2 
a 
o 0 z 125   150   175   200 

V (THz) 
225 250 275 

Figure 2.10: The Total Main Cavity Filter Response 
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2.4.3    The Main Cavity: Gain 

To analyze the effects of saturable gain on short pulses, we can use the technique 

of Seigman [11, pp. 363-368], with the following assumptions: 

1) Although the pulses are quite short, the rate equation approximations for 

analysis of the gain are still valid, being dominated by the extremely fast 

dephasing time of the excited state. 

2) The pulse duration is short enough that stimulated emission is the only 

significant process altering the upper lasing level population; i.e, pumping, 

spontaneous emission, and non-optical transitions from the upper level are 

negligible during this time. 

To begin the analysis, we can define several terms relevant to laser gain, starting 

with the population inversion density AN, and the stimulated emission cross- 

section a. The cross-section represents the effective area per excited state for 

interaction (transition) with an optical field. Thus, for a field with intensity / 

incident upon the gain medium, the net rate of transitions to the lower laser state 

per unit length is given by W = (I/hu)a AN. We can also define a useful quantity, 

optical field energy density, as p = I/c ([energy]/[volume]). 

In order to understand time dependent gain saturation, we now consider a small 

segment of the gain, Az, as seen in Figure 2.11. The use of the hats in this and 

the following variable definitions pertains to simplifying future, more complicated 

expressions after a change of variables. With this in mind, the rate of change of the 

energy density in this segment is equal to the input energy flux minus the output 

energy flux, plus the net stimulated emission rate. 

—.[p{z,i)Az] = I(z,i) - I{z + Az,i) + aAN(z,i)I(z,i)Az (2.14) 
ot 
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In the above equation, z and i refer to global time and space coordinates, or those 

with respect to the laboratory. Substituting I/c for p and taking the limit of (2.14) 

as Az —> 0 gives 

dl(z,i)        dl(z,t) A .%/. t\?,~ fs 
+ c —^-^ = c aAN(z, t)I(z, t) 

at dz 
(2.15) 

Additionally, given the approximations described above, we can express the change 

in the gain population inversion, 

%^-S)-^ (2.16) 

The factor of 2 above arises from a consideration of properties specific to the 

NaCl gain medium. In a two level laser, when an atom relaxes from the upper to 

lower level, the net population inversion changes by 2. In NaCl, a 4-level system, 

lasing occurs between levels 2 and 3 (see Figure 2.3), and centers in the lower laser 

level then decay into the ground state. If this decay is immediate, the population 

inversion would only change by one for each emitted photon. If, however, this decay 

is slow with respect to the laser pulse, the system is said to be "bottlenecked" by the 

lower level, and the inversion effectively changes by two for each emitted photon. 

It so happens that the lower laser level decay rate for NaCl is ~ 0.5ps, which is 

Pulse Energy 

Density p(z,l) 

Figure 2.11: Pulse Traveling through Saturable Gain 
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slow compared to the typical 100/s APM laser pulse (see Section 2.5). 

Solution of the two basic equations, (2.15) and (2.16), is greatly simplified with 

a change of coordinates. Selecting a reference frame that moves with the pulse, 

we define local time and space coordinates t = t — z/c and z = z, where the chain 

rule gives 

Pi Pi  PU PI   Pi~, Pi 

(2.17) 

dz dtdl + fadl = ~Ujdi + dz' ^'^ 

The intensity and population inversion can now be rewritten in terms of the new 

coordinate system as 

I(z, t) = I(z, i)    and   AN{z, t) = AN(z, i) (2.19) 

In this new, local coordinate system, the basic equations (2.15) and (2.16) become 

dl{z,t) 

d 
dt 

d dt      d dz 
didl + 'dz~dt~ 

d 
dt 

d d dt      d dz 

dz 
=   aAN(z,t)I(z,t) (2.20) 

dAN(z,t) (2a 
(jfy AN{z,t)I(z,t) (2.21) 

dt 

Rearranging, the first equation can be integrated over the length of the gain, 

fIout{t) dl rz=L 

/ -r = °\      AN{z,t)dz (2.22) 
Jlin(t)      I Jz=0 

noting the limits in the left-hand side integral as the input pulse (before entering 

the gain), and the output pulse (after exiting the gain). Now, if we define a "total" 

population inversion, 

ANtot{t)= (*~  AN(z,t)dz (2.23) 
Jz=0 

then (2.22) can be solved to yield an expression for the gain, 

Iout(t) = Iin{t)e°AN<°^ = G(t)Iin(t) (2.24) 
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The second basic equation (2.21) can also be integrated over the length of the gain 

with the help of (2.20) and (2.23), 

|£>(^^ = -(A)£7-M      (,25) 

= -(|j)[W*)-/«(<)] (2.26) 

This further simplifies to 

dANtot(t) 
dt 

Equations (2.24) and (2.26) describe the time-dependent gain and population in- 

version in the local coordinate system, which can be combined as 

d-^T1 = -{^)IM[e^Ntot{t)-1] (2-27) 
2 \ 

- (j£) Iout(t) [l - e-'AiV-W] (2.28) 

We can rearrange (2.27) and integrate from some time to before the arrival of the 

pulse, to time t, 

where AiVo is the initial population inversion of the gain, 

ANQ = f    AN(z,t0)dz (2.30) 
Jz=0 

The integral on the right-hand side of (2.29) is an expression for the accumu- 

lated input pulse energy per unit area, and is called the input energy fluence: 

Uin(t) =   fIin(t)dt (2.31) 

We can likewise define an output energy fluence, and a saturation energy per unit 

area, or saturation energy fluence, 

Uout{t)   =    fIout(t)dt (2.32) 
Jto 

2^ 

to 

Usat   =   — (2.33) 



23 

The saturation energy fluence differs from the saturation intensity by a factor of 

r, the upper laser level lifetime, and the additional factor of 2, resulting from the 

consideration of "bottlenecking" above. Saturation fluence represents the amount 

of energy per unit area that must flow past a section of gain medium to reduce the 

gain to 1/2 its unsaturated value. 

With these definitions, (2.29) can be integrated and expressed as 

I _ e-<?AN0 

In = Uin{t)/Usat(t) (2.34) 
I _ gO-AMot(t) 

Given the expression for the time-dependent gain, (2.24), we can re-write (2.34) as 

1 - l/Go 
ln  1-1/G(t) 

where Go is the initial unsaturated gain, 

= Uin(t)/Usat(t) (2.35) 

Go = ec*™° (2.36) 

The expression (2.35) can finally be rearranged to give the time-dependent gain as 

a function of the input energy fluence: 

G(t) = /„«(*)/■«*) = Go _ (Go _%-„„,„/,.., (2-37) 

This gives the value of the saturable gain for any time t across the input pulse. 

Considering the inclusion of this gain term into a model of the APM laser, we 

can make a simplification which greatly reduces the effort required to calculate 

the saturable gain. Since we are mainly interested in the laser output pulsewidth 

and energy, we can define a pulse-averaged, saturable gain which does not affect 

the laser pulseshape. Such a simplification would not alter the dynamics of the 

laser, but merely neglect the pulseshaping effects of the gain. This will effectively 

prevent the pulses from becoming asymmetric, as well as "walking" forward in time, 
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due to preferentially amplified leading edges. In terms of a numerical simulation 

with a vector pulseshape, this represents a great simplification, eliminating the 

need for any "re-centering" of the pulse. Moreover, since we have no easy way 

to experimentally observe the true, asymmetric pulseshape of a femtosecond pulse 

(the predominant measurement technique, pulse autocorrelation, is symmetric), 

we could not easily verify the results of a consideration of full gain saturation. 

For these reasons, we can derive a pulse-averaged gain, starting with (2.37) and 

a similar equation involving Uout(t), derived from (2.28) with the same steps used 

for (2.29)-(2.37): 

G(t) = Iout(t)/Iin(t) = 1 + (Go - l)e-^«W/^t (2.38) 

Defining Uin, [7out, and Gf as the corresponding time-varying quantities as t —> oo, 

we can immediately express the pulse-averaged gain from (2.37) and (2.38) as 

Gp = Uout/Uin =     Gn_1     —Q^ (2.39) 
m Gf-1       m G} 

With the pulse-averaged gain specified, we can now summarize the effects of 

the main cavity gain in the form of an operator, remembering that our APM model 

propagates pulse amplitudes, not intensities. Considering some main cavity pulse, 

p(t), incident upon the gain medium, a gain operator Q can be defined as 

9{p{t))=p{t)jGp (2.40) 

2.4.4    The Main Cavity: Net Model 

The filtering and gain functions defined in Sections 2.4.2 and 2.4.3 correctly model 

the passage of a light pulse through the main cavity, but only for one pass through 

the gain and BTP. In order to model a complete trip through the main cavity 
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and thereby relate the pulses ai and 61 of Figure 2.6, we must take each operator 

twice. In our cavity, the BTP is between the gain and the output coupler, and the 

high reflector is assumed to be R = 100%. Starting from the output coupler in 

Figure 2.6, the main cavity operator which operates on bi to yield ax becomes 

MC = TQQf (2.41) 

2.4.5    The External Cavity: SPM 

Light from the main laser cavity is directed into an optical fiber via a beam splitter 

(see Figure 2.1). When the laser is well aligned, the output mode has a Gaussian 

profile (TEMoo), and the light can be optimally coupled into the fiber through the 

AR-coated coupling sphere and index-matching gel. Due to reflections and mode- 

mismatch, only a fraction of the incident intensity can generally be coupled. This 

fraction is referred to as the (power) coupling coefficient, 7, and is typically 50%. 

A pulse launched into the optical fiber will acquire a phase chirp due to SPM. 

The pulse is retroreflected (see Figure 2.1) back through the fiber, and a portion 

returns to the main cavity. This process involves another coupling coefficient, 72, 

and another fiber phase shift due to SPM. With a good high reflector and coupling 

sphere, ~ 80% of the retroreflected light can typically be coupled back into the 

fiber. 

In order to analyze the net effect of the fiber, we start with the pulse just before 

the fiber, E0(t). For harmonic fields, Poynting analysis gives 

I0(t) = ±\E0(t)\> (2.42) 

where 77 is the characteristic impedance of the medium. In air, 77 is given by 

V = \f^ ~ \p- = 377f2 (2.43) 
V e      V en 
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After coupling and SPM, the pulse exiting from the first pass through the fiber 

can be expressed as 

E^t) = V7 E0(t) e-j{2~^)n2'yIo{t) (2.44) 

with corresponding intensity 

h{t) = 1I0(t) (2.45) 

This proportional relationship between input and output intensities is a direct 

consequence of the absence of dispersion in the special fiber. Now, including the 

second pass through the fiber, the final output pulse becomes 

E2(t)   =   V7 VT2 E1(t) e-^)^W 

=     7V^ EQ(t) e-^)"27/0(V^)^772/o« (246) 

=   7^^o(i)^'(^)n27(1+72)/o(t) 

where the additional (amplitude) coupling coefficient, ^7, has been included to 

express the loss from the fiber mode coupling back into the laser mode. Note that 

in the limit of perfect retroreflection (72 —> 1), this expression reduces to that of a 

single fiber doubled in length, as it should. 

Together with the power reflection coefficient of the beamsplitter, RBS, equa- 

tions (2.42), (2.43), and (2.46) can be combined into an external cavity operator, 

S, which relates a2 and b2 of Figure 2.6: 

Sb2(t) = RBSl y/Ti h(t) e JV 0+ 2»oAo ; (2.47) 

where b2(t) is the pulse amplitude injected into the external cavity, and the static 

phase $0 has been added to express any phase mismatch between the main and 

external cavities. 
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2.5    Numerical Model 

2.5.1    Introduction 

The analysis of the preceding sections has outlined a model to propagate laser 

pulses through an APM cavity. In particular, equations (2.8), (2.9), (2.41), and 

(2.47) combine with the proper inputs in an iterative model, 

bn
x   =   a^y/R + a^il-R) (2.48) 

bn
2   =   a%y/{l -R)- <%>/R (2-49) 

a?+1   =   MCbn
1=TQQtbn

1 (2.50) 
,                     ,/ Z,27rn2fc(l+fc2)7|bg|2\ 

a£+1   =   Sb^ = -fkJk2b^e3\ 2"°A°         )               (2.51) 

and fully describe the round-trip pulse propagation. 

In order to numerically implement these equations as a computer simulation, 

the laser parameters must be specified. These parameters include the initial pulse 

of the simulation, gain constants, and BTP filter specifications. To accurately 

specify model parameters, I used the output specifications of a typical NaCl APM 

laser [12] combined with the output beam radius determined in Section 2.2, all 

shown in Table 2.1. 

2.5.2    The Simulation Seed Pulse 

For the simulation we can use a Gaussian seed pulse, since Gaussian functions are 

mathematically tractable and in fact a fair approximation to the actual laser pulse 

shape: 

E(t) = Ae-2ln2^-t^/St°2    V/cm (2.52) 
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Table 2.1: Typical NaCl APM Laser Output Specifications 

Average output power 100   mW 

Output beam radius 2.45   mm 

Pulse repetition rate 80   MHz 

Pulse width (FWHM) 100   fs 

Pulse bandwidth 4.5    THz 

Ac 1.60    /im 

Using (2.42) and (2.43), this becomes an expression for the pulse intensity, 

I{t) = {A2/2r]0)e-^2{-t-t^lst°2    W/cm2 (2.53) 

where St0 = full width at half maximum (FWHM). Considering a chain of such 

pulses as the main cavity output pulse train, the average output power can be 

calculated from the pulse power, averaged over one period of the pulse train, r, 

1   r/2 

P^ = -rL/{t)dt W (2.54) 

where the interval r is centered around the pulse. For the typical 80 MHz pulse 

train (r = 12.5 ns) and 100 fs pulses, the pulse itself accounts for only 0.0008% of 

the interval. Since the power dies off exponentially around the pulse center, it is 

safe to integrate the pulse over all time, 

1   f°° „       7r(0.245cm)2   /•«> i r°° 
Pavg = ~  /       P(t)dt = 

T J—oo 12.5ns 

/oo 
I{t)dt 

-oo 
w (2.55) 

where the output beam radius has been used to convert the pulse power to intensity. 

Inserting the expression for the pulse intensity, 

7r(0.245cm)2  //°° p       = A avg 12.5ns 

7r(0.245cm)M2  InSto2 

2 770 12.5ns    V41n2 

f" (A2/2rjQ) e-4in2 (t-to)2/«o2 dt (2.56) 
J—oo 

W (2.57) 
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Prom Figure 2.1, we see that the average intracavity power is the average output 

power divided by both the output coupler and external cavity beam splitter power 

transmission coefficients, or PoutjPcav = RRBS, since the laser radiation must pass 

through both of these mirrors to be output. Together with the values for 770 and 

6t0, and the other laser parameters from Table 2.1, we arrive at the pulse field 

amplitude factor, 

,      (2 77012.5ns 667mW /41n2\1/2     ,„,,,, ,„ ro. 
A=\     '   ,nn„—ro i/-r-?       =17.7kV/cm (2.58) 

V      7r(0.245cm)2       \ Tv6t0
2 J ' V       ; 

One should note that this amplitude factor applies to the free-space intracavity 

field. Thus, in expressing the input field to the gain or the optical fiber (external 

cavity) operators defined in Section 2.4, I must take into account their different 

(and much tighter) beam waists. From Figure 2.2, we see that the beam radius 

inside the gain medium is fa 10.4//m. Thus, the ratio of the pulse intensity inside 

the gain to the free-space intracavity intensity is 

¥L= (JT^Tf ,2=55.5xl03     =►     §^ = 236 (2.59) 
IFS       (10.4 x 10_4cm)2 EFS 

Similarly, the field inside the optical fiber, which has a lO/im core diameter, will 

be much higher. 

iäO. = , 'a2
1
4„5C

4
m)'    = 240 x M»     *.     ^ = 490 (2.60) 

IFS       (5 x 10-4cm)2 EFS 
K      ' 

2.5.3    Gain Constants 

Section 2.3.1 discussed the structure and properties of the NaCl gain medium. 

The F^O^" defect has been studied in detail, and has the laser parameters listed 

in Table 2.2 [13, 10, pp. 20-21], where the rn parameters represent the energy level 

lifetimes shown in Figure 2.3. 
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Table 2.2: Laser Gain Parameters 

Center       A0 n T2 r3 Av a Isat 

 (fjm)    (psec)    (nsec)    (psec)    (THz)    (1Q-I6cm2)    (kW/cm2) 

F^:0^      1.6        0.5        160        0.5 45 0.9 9.0 

From Tables 2.1 and 2.2, we see that the pulse bandwidth accounts for only 10% 

of the gain linewidth, and in the presence of the much narrower BTP linewidth, 

we can neglect the gain's dependence on frequency. The gain is thus adequately 

modeled by (2.37), and only the parameters Go and Usat remain to be determined. 

Given the values for a and Ao, we can proceed to calculate the saturation fluence 

from (2.33): 

Usat = 4r~ = 690 ^J/cm2 (2.61) 

In order to determine the steady-state, unsaturated gain coefficient, G0, we 

must take into account both the gain and loss mechanisms of a pulse. A pulse I(t) 

traveling through the main cavity will experience the saturable gain twice, then 

the output coupler loss before returning to its original position. In order to have a 

steady state, the power gained by the pulse per round trip must equal the power 

lost, i.e., the output power. Considering a pulse Iin(t) embarking upon two gain 

passes, 

iout{t) = gg iin(t) (2.62) 

Additionally, we must remember that the beam radius in the gain is tighter than 

the free-space radius. Using (2.59), we can relate the gain input pulse to the free- 

space input, as well as the free-space output pulse to the gain output, to obtain 

Iout,Fs{t) = 55 5x^3 GG [55-5 x 103 Ws(*)] (2-63) 

where Iin,FS is just the simulation seed pulse, given by (2.53) and (2.58). Since we 



31 

know the average output power of the NaCl APM laser, we can use an expression 

like (2.54) to calculate the free-space averages /out and /;„. Then, the power gained 

is given by 

(°UtP^eam) X (*"* ~ 4) = -(O-245^)2 ('- - '«») (2-64) 

In this manner, the expression (2.64) depends only upon Go, and when equated 

with the average main cavity output power, will determine Go uniquely. It is 

important to note that the average output power listed in Table 2.1 (100 mW) is 

the total APM output power, meaning that the main cavity output power used to 

evaluate (2.64) is this value divided by the beamsplitter transmission coefficient, 

1 — RBS- 

Since the operator Q is a complex function of the input intensity, (2.63) is most 

easily solved numerically with a computer. Doing this calculation and equating 

the resulting power gained with the average main cavity output power, I arrive at 

the value of Go for my numerical model, 

G0 = 1.76 (2.65) 

2.5.4    BTP Filter Specifications 

From the analysis of Section 2.4.2, we have an expression for the transmitted 

intensity of the birefringent tuning plate versus wavelength, (2.10). The indices 

of refraction for crystalline quartz are given in several references [14], and for 

A = 1.5414, n0 = 1.52781 and ne = 1.53630. The parameter 9 was already specified 

in Section 2.4.2 as Brewster's angle, or 6 = 56.8°. The only remaining parameters 

in the BTP specification are 0, the rotation of the plate (see Figure 2.7), and t, 

the plate thickness. 
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Typically, the plate thickness ranges from 0.5-5 mm, depending upon the de- 

sired output pulse width, where thicker plates yield longer pulses, from (2.10). 

Because several other parameters, including the coatings of the optics used in the 

particular laser, combine with the BTP to determine the ultimate pulsewidth, the 

thickness used experimentally may not match the theoretical value. We can use 

1.75 mm for the numerical model of this thesis, since it falls in the typical experi- 

mental range, and the simulations of Chapter 4 will show that this thickness yields 

~ 100 fs pulses. 

To determine the proper value of (f>, we must examine (2.10). Adjusting <j> 

will essentially alter the center wavelength of the laser, by altering the zero-loss 

wavelength of the BTP. From (2.10), we see that two conditions will cause ix(A) = 

0: either $ = (mir/2), or the quantity in parenthesis being an integral multiple of 

7T. The first of these will cause JT(A) = 0 for all A, and is therefore not useful. The 

second condition can be written as 

t (njl+cos^cos2^-^)] no 
► = m (2.66) 

A   1   [1 - COS2 6 (^ + ^)]V2 [1 - £2§^]l/2 

where m is an integer. With all other quantities specified <j) can easily be deter- 

mined with a computer. For t = 1.75 mm, the only valid m is 8, meaning that the 

BTP can tune over only ~ 1 "order" in the neighborhood of A = 1.60/xm. Using 

m = 8, we find <f> = 48.0°. 

Thus, the model BTP is completely specified, and the transmission response 

versus wavelength completely known. All of the BTP parameters are summarized 

in Table 2.3. 

In specifying the initial simulation pulse, gain constants, and BTP parameters, 

we have completed the numerical model (2.51) for the APM laser. Chapter 4 will 

use this model to simulate both steady-state APM behavior, and APM nonlinear 
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Table 2.3: Model BTP Parameter Specifications 

n0 ne t        6        <j) 
 mm 

1.52781    1.53630    1.75    56.8   48.0 

dynamics. First however, Chapter 3 will discuss the study of nonlinear dynam- 

ics, and introduce valuable graphical and quantitative techniques to characterize 

system dynamics. 



Chapter 3 

An Overview of Nonlinear 

Dynamics and Chaos 

3.1    Nonlinear Differential Equations and Phase- 

plane Analysis 

The discovery of strange attractors, chaos, and even fractals originated in the study 

of weather, which involved a simple set of nonlinear differential equations. Since 

the original discoveries, chaotic behavior has been found in even the most basic 

of mathematical systems. Indeed, most processes in the real world are inherently 

nonlinear at some level, but the lack of good mathematical tools for handling such 

equations has historically encouraged mathematicians and engineers alike to make 

linear approximations. Take, for example, the simple pendulum problem from 

introductory physics. The full description of the pendulum comes from Newton's 

Second Law, F = ma, where the governing force (due to gravitation) is tangent to 

34 
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the pendulum. Thus, we have 

mLB = -mg sin 0     =>     0 + ysin0 = O (3.1) 
Li 

for a pendulum of length L and mass ra, where 0 is the angular displacement of 

the pendulum arm from vertical. This can be re-written as the following set of 

first-order, coupled differential equations 

0'i   =   #2 (3.2) 

02   =   -I sin 0i (3.3) 

Although they look simple, these equations are nonlinear and require significant ef- 

fort to be solved analytically. Traditionally, the equations are linearized by assum- 

ing the pendulum's excursions from vertical (rest) are small, and thus sin0! ss d\. 

Although nonlinear systems of equations are difficult to solve analytically, a 

qualitative, graphical approach generally yields the important behaviors of the 

system, while keeping the problem tractable. The approach commonly used, called 

phase-plane analysis, involves graphing system variables against their derivatives 

(such as position and velocity). Thus, one avoids actually solving the system of 

differential equations, and with correct interpretation, can determine general and 

even limiting system behaviors. 

For an example, we can study the so-called logistic equation, 

±=rx i1" id (3-4) 

This equation was originally used to describe biological populations, where r is the 

growth rate, and K the carrying capacity. Figure 3.1 shows a graph of x versus 

x, where the velocity is positive for all x < K, negative for all x > K, and zero 

for x = 0 or x = K. Figure 3.2 demonstrates these movements by superimposing 
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Figure 3.1: Graphical Analysis of the Logistic Equation 

arrows on the x-axis in the direction of the velocity. Thus, starting with either 

x < K or x > K, we see that x will move toward K. In this manner, K is easily 

identified as a fixed point of the system. This can also be seen by the fact that the 

velocity at x = K is zero, so a system with x = K will remain there indefinitely. 

x = 0 is also a fixed point, but since a small perturbation away from this point will 

yield a positive velocity (away from x = 0), it is an unstable fixed point, whereas 

x = K is stable. This analysis can give a good qualitative picture of the actual 

time evolution of x, or the trajectory. Trajectories starting at the fixed points will 

remain at the fixed points; any other starting value will end up at x = K. This 

behavior is summarized by Figure 3.3. Moreover, the phase portrait in Figure 3.2 

indicates that, for x values starting below K/2, the velocity will initially increase, 

then decrease before reaching the stable value of K. These velocity gradients 

translate to different concavities in the actual trajectories, as seen for initial values 

below K/2 in Figure 3.3. 

Since a trajectory is a solution to a system of nonlinear differential equations, 
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«  x 

Figure 3.2: Graphical Interpretation of the Logistic Equation 

► t 

Figure 3.3: Logistic Equation Trajectories 
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certain existence and uniqueness theorems can be applied. For a large class of 

autonomous systems (systems without a time-dependent forcing) like the logistic 

equation above, the uniqueness theorem specifies that there can be only one solu- 

tion to the system at each point in space [15]. Consequently, trajectories cannot 

intersect. For one-dimensional systems, this means that dynamics are relatively 

simple since every trajectory must flow monotonically toward or away from a fixed 

point. No oscillations are even possible, since this would necessitate overlapping 

trajectories. 

Much more complicated dynamics can arise in higher dimensional systems. Two 

such cases are limit cycles (stable periodic orbits) and quasiperiodicity. Quasiperi- 

odicity is a "combination oscillation" characterized by two, incommensurate fre- 

quencies. In this case, the orbit in phase space never closes upon itself, but wraps 

around indefinitely. Quasiperiodicity is often visualized as a trajectory orbiting 

around the surface of a torus, where the two characteristic circumferences are 

proportional to the two oscillation frequencies. 

3.2    Bifurcations 

Many experimental systems can exhibit several radically different behaviors, based 

upon certain control parameters. For example, pumping a laser either above or 

below threshold will result in totally different output. Altering this one parameter, 

i.e. the pump power, causes a change in the system. When a system's dynamical 

behavior changes, it is said to have undergone a bifurcation. The varying parameter 

that causes the change is called the bifurcation parameter, and the value of this 

parameter where the change occurs is called the bifurcation point. The bifurcation 

point for the laser above is the threshold pumping level.   More technically, the 
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system is not stable at the bifurcation point, since a perturbation in either direction 

would cause different dynamical system behavior. 

Implicit in this description is a consideration of the stability of fixed points. 

In the case of a laser, there are two fixed points: off (no laser oscillation), and 

on (laser output, which follows some kind of output power versus pumping curve). 

Below threshold pumping, the "off" fixed point is stable and the "on" fixed point is 

unstable; above threshold pumping, the situation is reversed. To demonstrate this 

mathematically, consider a simplified laser model where p represents the number 

of photons in the laser mode. The change in this number for steady state can be 

represented by the gain minus the loss, 

p = aNp - ßp (3.5) 

where N is the population of the upper lasing level, and a and ß are simply 

proportionality constants. Thus, the first term represents gain proportional to 

the population in the upper lasing level, and the second term is the round-trip 

cavity loss. Normally in steady state, (3.5) would be zero, but a varying pumping 

level will adiabatically change the value of the gain with respect to steady-state 

laser oscillation. The population of the upper lasing level can in turn be expressed 

as the steady-state population due to pumping, N0, minus a contribution to the 

steady-state laser mode which is proportional to the number of photons p in this 

mode, or 

N = N0-jp (3.6) 

where 7 is related to the stimulated emission rate. Thus, the expression for p 

becomes 

p=(aN0-ß)p-a-yp2 (3.7) 
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To obtain the fixed points, we set p = 0, and find 

p = 0   or   p=— + -N0 (3.8) 
cry      7 

To determine the stability of these fixed points, we examine the graph of p versus 

p for different values of pumping, iVo, shown in Figure 3.4 (a)-(c). For iVo < ß/a, 

the fixed point at the origin is stable and the other is unstable. For N0 = ß/a, the 

two fixed points coalesce at the origin, and both are only half stable. For iV0 > ß/a, 

the graph looks much like the logistic equation in Figure 3.2, where the origin is 

unstable, and the fixed point at p = ^ + ^ iV0 is stable. The results of this type of 

analysis are conveniently summed up with the bifurcation diagram in Figure 3.5, 

which plots p versus the bifurcation parameter, 7V0. The stable operating points 

are indicated by solid lines, the unstable are dashed, and the bifurcation point is 

easily identified as N0 = ß/a, the value at which the two fixed points exchange 

stability. Being a simplistic laser model, it is not surprising that this figure looks 

just like the classic plot of output power versus pump power for an ideal laser. 

The bifurcation shown in Figure 3.5 is more commonly known as a transcritical 

bifurcation. Numerous other types of bifurcations are possible, depending upon 

the number of fixed points in question, whether fixed points are created or de- 

stroyed during a bifurcation, the dimensionality of the system, and even symmetry 

considerations. Regardless of the type of bifurcation, the importance of the bi- 

furcation diagram lies in its clear presentation of the different dynamical regions 

of operation for a system as some parameter is varied. Technically, a bifurcation 

diagram displays both stable and unstable orbits, as in Figure 3.5, but one more 

commonly encounters diagrams without the unstable orbits, under the same name. 

Although this special case is referred to as an orbit diagram, we can use the more 

common term, bifurcation diagram. 
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(a) 

(b) 

(c) 

«-P 

Figure 3.4: Simple Laser Fixed Point Stability Analysis (a) iV0 < ß/a (b) N0 

ß/a (c) N0 > ß/a 
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Figure 3.5: Bifurcation Diagram for Simplified Laser 

Most interesting systems studied today contain more than just stable fixed 

points. Stable periodic orbits are desired for numerous purposes in communication 

or laser systems. Like fixed points, periodic orbits can also experience bifurcations, 

being created, destroyed, or simply changing stability. This is an important point 

to keep in mind when studying such a complex system as the APM laser. 

3.3    Chaos 

3.3.1    Introduction 

In the long history of nonlinear systems analysis, the phenomenon of chaos has 

only recently come to light. So new and complex is the behavior, the precise 

mathematical definition of 'chaos' has yet to be established. In spite of this, 

however, certain properties of chaotic systems have been agreed upon: 
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1) Chaos is an extremely complex, seemingly random, yet entirely deterministic 

behavior of a system in response to known, noiseless inputs. 

2) All chaotic systems exhibit a sensitive dependence on initial conditions, where 

two arbitrarily close trajectories in phase space will exponentially diverge over 

time. 

3) In a chaotic system, trajectories are aperiodic, and do not reduce to fixed 

points, limit cycles, or quasiperiodic orbits as t —> oo. 

Together with the discovery of chaos was the identification of the strange attrac- 

tor, or the very complex, stable phase-space structure to which most trajectories 

converge in a chaotic system. The existence of such a structure reveals another 

subtle difference between chaotic and stochastic orbits: a purely random orbit 

would eventually visit every point in phase space, while a chaotic orbit remains 

confined to the attractor. 

3.3.2    The Lorenz System 

A good example of chaos and the strange attractor comes from the Lorenz equa- 

tions, studied by Ed Lorenz in 1963 [16], to model convection rolls in the atmo- 

sphere. Without touching on the physical interpretation of the equations, the 

system is given by 

x   =   a(y — x) 

y   =   rx — y — xz (3.9) 

z   =   xy — bz 

The constants a, r, b > 0 are parameters of the system. In studying these equa- 

tions, Lorenz performed transformations, identified fixed points, and did stability 
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analyses for different values of the parameters. For certain ranges of values, he 

proved that the trajectories did not exhibit limit cycle or fixed point behavior, yet 

they remained bounded within a finite volume. This apparent paradox was some- 

what explained when Lorenz integrated the equations numerically, and plotted the 

solutions in xyz space, shown in Figure 3.6. 

Many remarkable features arise from this strange attractor, most notably that 

the structure is indeed limited in volume. Lorenz proved that his attractor not 

only has finite volume, but it in fact has no volume. Since the Lorenz system is 

also autonomous, this requires that no two trajectories intersect, yet each must 

still remain within a finite (zero) volume. These facts led Lorenz to deduce that 

his attractor was actually an infinite complex of surfaces, wrapping around phase 

space in a folding motion. An alternate view of the attractor (the x-z plane) in 

Figure 3.7 shows some more detail of this interleaving surface type of structure. 

This particular view inspired the name "Butterfly Attractor". 

To demonstrate the feature of sensitive dependence on initial conditions which 

is unique to chaos, Figure 3.8 shows the time development of 1000 nearby initial 

conditions in the Lorenz system. A portion of the Lorenz attractor is superimposed 

on the initial conditions in each frame, as a reference. The different conditions 

initially appear to move in a similar manner, but rapidly diverge so that in a small 

amount of time the resulting orbits could be virtually anywhere on the attractor. 

Even quasiperiodic systems do not display such sensitive dependence: should two, 

nearby initial conditions propagate forwards in time, neither will form a closed 

orbit (loop) in phase space, but they will retain their proximity for all future 

times. 
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Figure 3.6: The Lorenz System Strange Attractor 
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Figure 3.7: The x-z Lorenz Attractor 

3.3.3    Lyapunov Exponents 

Despite the beauty of the Lorenz attractor and all of the graphical analysis per- 

formed above, we still have yet to present any quantitative approach to identifying 

or characterizing chaos. Since one of the universally accepted criterion for identi- 

fying chaos is the feature of sensitive dependence on initial conditions, this would 

seem a good starting point for quantification. More specifically, sensitive depen- 

dence means that nearby trajectories will exponentially diverge over locally short 

times, in the form 

6(t)=602
xt (3.10) 

where 6 is the distance between two nearby trajectories after time t, as shown in 

Figure 3.9. In (3.10), A is known as the Lyapunov exponent, which is a measure of 

the predictability of the system. The choice of base 2 gives the appropriate units of 

bits/second, the rate at which information is lost. This means that a system with 

initial conditions measured to n bits of precision will be completely unpredictable 

after a time of t ~ n/X. In general, most systems are characterized by several 

Lyapunov exponents, depending upon the dimensionality of the system. The signs 
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Figure 3.8: The Time Evolution of 100 Nearby Initial Conditions in the Lorenz 
System (a) t = 1 and the orbits seem to track each other fairly well (b) t = 3 and 
the orbits have separated into a long tail (c) t = 6 and several different groupings 
of outcomes are apparent (d) t = 10 and any one initial orbit could be anywhere 
on the attractor (inspired by a similar figure in Strogatz [17]) 
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Figure 3.9: The Divergence of Nearby Trajectories 

of the largest exponents indicate either converging (A < 0), periodic (A = 0), or 

chaotic (A > 0) behavior. Although dissipative chaotic systems require at least one 

exponent in each of these regions (A > 0 in the direction of chaotic exponential 

divergence, A = 0 along the trajectory, and A < 0 in the direction responsible for 

keeping the size of the attractor finite), only one positive exponent is required to 

exhibit chaos. 

There are several analytical methods for determining a system's Lyapunov ex- 

ponents, but many require prior knowledge of the differential equations governing 

the trajectories. Furthermore, not all exponents need to be determined to deduce 

chaotic behavior, only the largest one. A simple method to find this exponent uses 

the actual time evolution of two nearby trajectories. We begin with some trajec- 

tory on the chaotic attractor, and observe another nearly identical trajectory. The 

distance between these two should be quite small, on the order of 10_5% of the 

overall trajectory extent if possible. Next, we propagate both states forward in 

time, recording their relative distance. We can now plot the log2 of the distance 

\\S(t)\\ between the two trajectories versus time, and fit a line whose slope reveals 

the Lyapunov exponent. 

As an example of such a calculation, the Lorenz system of Section 3.3.2 yields 

the logarithmic distance plot shown in Figure 3.10.  The meandering of the dis- 
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tance function during its upward trend results from considering only one Lyapunov 

exponent when in fact, the trajectories move in more than one dimension. Also, 

the graph reaches a plateau, which is simply a consequence of the finite size of the 

attractor: two trajectories can only move as far apart as roughly the "diameter" of 

the attractor. Ignoring this plateau, the line fit to the graph indicates an exponent 

of 1.03, which is quite close to other published calculations [17]. 

to' 

<M 
bjO 
O 

slope 1.03 

Figure 3.10: Calculation of the Largest Lyapunov Exponent for the Lorenz Attrac- 
tor, derived from the slope of the log2 \\S(t)\\ vs. t curve 

One must keep in mind that this calculation is local to a specific region of 

phase space, however, and because Lyapunov exponents are global properties of an 

attractor, this simplified technique will not in general represent the true Lyapunov 

exponent. Section 3.4.4 will discuss a better method to determine the largest 

Lyapunov exponent. In properly calculating a positive largest exponent, one can 

show convincing evidence of the existence of chaos. 
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3.4    Iterative Maps, Fractal Dimension, and Lya- 

punov Exponent Estimation 

3.4.1    The Logistic Map 

Up to this point, the treatment of nonlinear dynamics has assumed that the systems 

in question are continuous. That is, the system is governed by set of first-order 

nonlinear differential equations, and the trajectories are therefore continuous flows. 

Another class of problems involves discrete time, which can result from a logical 

necessity to treat time in discrete units, or simply from the construction of iterative 

mappings. Mappings involve a set of transformation rules to take the system from 

a current state to the next. A simple but dynamically rich example is the logistic 

map, which bears obvious resemblance to the logistic equation (3.4), 

xn+x = rxn(l - xn) (3.11) 

For a given value of the parameter r, an input of xn will yield some output xn+x. 

Applying the mapping iteratively to this and successive outputs will generate a 

series of values which, assuming each iterate is offset in time, forms a discrete time 

series of data. This type of interpretation directly applies to the model of the 

additive-pulse modelocked laser developed in Chapter 2. 

Considering the logistic map (3.11), we can first observe that restricting the 

domain xn to [0,1] and r values to [0,4] will force (3.11) to map onto itself. To 

explore the map's behavior under these assumptions, we can begin with r = 2 (r 

values between 0 and 1 are uninteresting, as they iteratively contract the map to 

zero). Choosing a value of x0) say 0.2, we iterate the map several (100) times to 

allow any initial transients die out. Next, we observe the map output for several 
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subsequent iterations, shown in Figure 3.11. The map has settled into a constant 

value, which is often referred to as period-one behavior, since one iteration can be 

taken as one period. The line connecting the points in Figure 3.11 merely serves 

to aid the eye, since the map provides discrete data, 

lr 
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0.6 

0.4 

0.2 

0 2 4 6 8 10 

Figure 3.11: The Logistic Map Exhibiting Period-One Behavior: r = 2, x0 = 0.2 

Choosing the larger value of 3.3 for r, we see markedly different behavior. Fig- 

ure 3.12 shows that the map has settled into a stable period-two cycle. Increasing 

the r value a bit more to 3.5, we see another period-doubling to period-four, shown 

in Figure 3.13. 
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Figure 3.12: The Logistic Map Exhibiting Period-Two Behavior: r = 3.3 
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Figure 3.13: The Logistic Map Exhibiting Period-Four Behavior: r = 3.5 

With such rapid changes in system dynamics, a bifurcation diagram can greatly 

simplify the analysis as the parameter r varies. To construct such a diagram for 

a map, one proceeds as above for Figures 3.11-3.13, performing the sequence of 

preiterations for each new value of r, then plotting 20 or so iterations (xn+i) 

before re-modifying r. The result in the case of the logistic map is both complex 

and beautiful, shown in Figure 3.14. 

The evolution of the logistic map as r is increased is referred to as the period- 

doubling route to chaos. The system begins in period-one, then doubles to period- 

two, four, eight, and so on until it becomes chaotic around r = 3.57. This chaotic 

region is characterized by what appears to be a noisy smear on the bifurcation 

diagram. Although no proof of chaos for the logistic map is given here, a positive 

Lyapunov exponent can be determined analytically [17]. 

The logistic map bifurcation diagram also reveals much more than just several 

period-doublings and a chaotic region. For instance, there is a large window of 

period-three behavior located around r = 3.84, signifying the existence of stable 

oscillations in the very midst of chaotic parameter space. One may also note that 

each of the period three orbits period doubles in the same manner as the overall 
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Figure 3.14: The Logistic Map Bifurcation Diagram, shown in (a) full-scale and 
(b) a closeup of the period-doubling and chaotic regimes 
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map, in fact producing exact replicas of the original figure. This observation reveals 

the feature of self-similar structure, a characteristic of chaos, since strange attrac- 

tors are inherently fractal in nature. Section 3.4.2 will discuss fractal dimension, 

which is one of the identifiers and quantitative measures of fractal objects. 

3.4.2    Fractal Dimension 

The logistic map raises several issues about the nature of fractals and their re- 

lationship to chaos, especially the question of dimension. If a fractal structure 

is truly self-similar, then we could examine successively smaller and smaller por- 

tions of the structure, uncovering the same detail at each iteration. Measuring the 

physical dimension of the structure then seems a formidable task. 

Starting from a simpler level, we can first consider the physical properties of 

more easily defined geometrical objects. A line of length L which occupies one- 

dimensional Euclidean space can be divided into n equal parts, each of length 

I = L/n. The smaller pieces are exact copies of the original line scaled by a 

factor s = l/L = l/n. Likewise, a square occupies two dimensions, and can be 

divided into n equal squares scaled by a factor s = l/L = 1/y/n, while a cube 

in three dimensions becomes n equal cubes scaled by a factor s — 1/'y/n. Thus, 

the dimension D of the original object helps to relate the number of self-similar 

structures to their scaling as 

n=l/sD (3.12) 

Based upon this observation, we can define a so-called similarity dimension as [18] 

^     logn 
D=i^T (3-13) 

°  S 

where n is the number of self-similar parts, scaled by s. 
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With this in mind we can examine the Koch curve, formed from a straight 

line segment by repeatedly replacing each line with four new lines, each of 1/3 

the length. Figure 3.15 shows this process, and the resulting fractal structure. To 

(a) (b) 

(c) (d) 

Figure 3.15: Constructing the Koch Curve: (a) shows the simple line segment 
"initiator" of the Koch curve, (b) shows the result of one iteration which replaces 
the original line with 4 new lines of 1/3 the original length, (c) shows the second 
iteration, and (d) shows the more fractal-like Koch curve after only six iterations 

calculate a similarity dimension, we use n = 4 parts with a scaling of s — 1/3, 

yielding 

log 4 
D = -?- = 1.26185... (3.14) 

log3 

which is not integral in value.  In fact, one of the identifying features of fractals 

is non-integer dimension. Comparing a one-dimensional line segment to the Koch 

curve, the Koch curve retains the properties of the line in terms of being divisible 

by a single break, yet the Koch curve requires more than one-dimension to contain 

its infinite structure. Hence, non-integer dimension aptly describes fractal objects. 

Practically speaking, however, we cannot directly use (3.13) to calculate the 

dimension of more complicated structures such as the Lorenz attractor since local 

scaling cannot be precisely determined, but a more generalized box-counting ap- 
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proach can be employed. We can divide the phase space containing the attractor 

with a grid of side length 1, then count how many boxes, TV, of the grid actu- 

ally contain some of the attractor. Since N = l/sD and s oc I from the above 

discussions, 
log TV 
log 

D oc =2il (3.15) 

Thus, we can calculate N for several different grid sizes I, plot log N versus log I, 

and estimate the fractal dimension from the linear slope. 

We are concerned with the fractal dimension of attractors mainly because the 

calculation of the largest Lyapunov exponent relies on some knowledge of the at- 

tractor phase space, in order to correctly map the behavior of two neighboring 

trajectories. Given a simple time series, such as the output of the APM model de- 

veloped in Chapter 2 however, we have no direct knowledge of the attractor or its 

phase space variables. Section 3.4.3 will discuss how to expand the concept of frac- 

tal dimension to a practical embedding dimension for the proper reconstruction of 

unknown chaotic attractors. For more information concerning fractals and fractal 

dimension, the interested reader can turn to several good publications [19, 20]. 

3.4.3    The Ikeda Map and Attractor Reconstruction 

In order to properly calculate a largest Lyapunov exponent for an experimental 

system, we must have some knowledge of the system's phase-space portrait. For 

example, in performing even the simple exponent calculation for the Lorenz at- 

tractor in Section 3.3.3, we iterated two initial conditions in the full xyz phase 

space to determine their accumulated separation. The APM laser modeled in this 

thesis however, yields only a time series of the laser output. Based upon the com- 

plexity of the system, we have every reason to believe that the actual dynamics 
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occur in much more than one dimension. We are thus faced with the problem of 

"reconstructing" the phase portrait of the laser from only this time series. 

Fortunately this problem has been addresses previously, as early as 1936, when 

H. Whitney discussed the mapping of manifolds [21]. Based upon his work, it 

can be shown that, given a single-variable time series, x(t), one can construct an 

n-dimensional phase space from x(t), x(t — Ti), x(t — r2), ..., x(t — rn), for the 

proper choice of Tk [22, 23, 24]. The idea behind this claim is that we simply need 

n independent system variables, not necessarily the true dynamical variables of the 

system, so that the reconstructed orbit will visit most of the system's phase space, 

and thereby yield a complete phase portrait. Whitney's contribution involved 

proving that the properties of the original attractor would be preserved if the 

phase-space embedding dimension, m (i.e., the Euclidean dimension within which 

we construct the attractor), were related to the true attractor dimension, D, by 

m>2D + l (3.16) 

More precisely, if this inequality holds, the mapping between the reconstructed 

and true attractor phase spaces will be one-to-one. If this is the case, we can use 

the reconstructed phase space to study the properties of the attractor, such as the 

fractal dimension or Lyapunov exponent spectrum. 

The choice of the Tk in the technique above was vaguely described as "proper." 

More specifically, we need to choose the r^ such that the delayed phase-space 

variables are roughly "independent" of each other. Several opinions have been 

voiced on the proper Tk, and many originally believed that Tk could be "almost 

arbiträr[y]" [25, p. 295]. More recently, most researchers have agreed that the 

mutual information function of the time series should be used to determine for 

which delays will the variables be most uncorrelated [26].   The delay value for 
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the first minimum of this function is then used for r. Setting all r^ equal to this 

single value r is also common, since the process of calculating several different 

delays is costly. Moreover, in the case of iterative mappings, the entire overhead 

of calculating the mutual information can be avoided because r can be taken to 

be 1 iteration. One can choose r = 1 because each map iteration represents a long 

temporal evolution of the system (in the APM model, the pulses travel a complete 

round trip through the cavity), and thus successive iterations hold minimal mutual 

information. 

To explore and verify the technique of attractor reconstruction, we can visit 

another iterative mapping, the Ikeda map [27, 28]. This map was first developed 

to express the transmitted light of a passive ring cavity containing a two-level 

absorber, and for this reason holds several similarities to the APM model of Chap- 

ter 2. More generally, it can be viewed as a mapping of the complex z plane to 

itself [26], and expressed as 

Zn+i =P + Bzne^F (3.17) 

For the parameter values of p — 1.0, B = 0.9, K = 0.4, and a = 6.0, the map 

exhibits chaotic behavior. Since the phase space is the complex plane, the attractor 

can be plotted in two dimensions, as shown in Figure 3.16. This swirling attractor 

has been shown to have fractal dimension D w 1.8 [29]. 

Even though (3.16) would require 2x1.8+1—^5 dimensions to properly embed 

the attractor, we can observe the results of using only two dimensions, since five 

would be difficult to visualize. We can reconstruct the attractor from Re(z) in 

(3.17), by using Re(zn) and Re(zn+i) (r = 1 from reasons discussed above for 

mappings). Figure 3.17 shows the reconstructed attractor which, although different 

from the original attractor, displays the same general properties with regards to 
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Figure 3.16: The Ikeda Attractor 

the system dynamics. 

Thus, to study the APM model, we can reconstruct the attractor in the appro- 

priate dimensional phase space, simply with a time series of the output of the laser. 

Since we do not know the true dimension of the system beforehand however, we 

must use other techniques to estimate the proper embedding dimension. Abarbanel 

et al. have developed the so called method of false nearest neighbors for just the 

purpose of determining embedding dimension with data from a system with un- 

known phase space variables [29]. Nearest neighbors are simply points separated in 

phase space by a minimum distance. False nearest neighbors are neighbors which 

appear to be close to one another, as an artifact of projecting the attractor in an 

improper (too small) phase space. This can be visualized as follows: imagine pro- 

jecting the Ikeda attractor of Figure 3.16 vertically onto a line. Every point from 

any given vertical slice of Figure 3.16 would then appear to be a nearest neighbor. 

Since a Lyapunov exponent calculation involves looking for nearest neighbors in 
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phase space, so as to follow their divergence forward in time, the selection of false 

nearest neighbors can be catastrophic, because the two trajectories could actually 

have originated from opposite ends of the attractor. This would yield abnormally 

large Lyapunov exponents, since trajectories from opposite ends of the attractor 

are quite uncorrelated, and would likely diverge more rapidly than neighboring 

trajectories. 

The method proposed by Abarbanel et al. tallies the total number of false near- 

est neighbors in phase space for a given dimension, d. By incrementally increasing 

the value of d, this number can be compared for larger and larger embedding di- 

mensions, until the number of false neighbors decreases to zero. False neighbors 

are identified via two tests: given the distance between neighbors in dimension d, 

Rd, and d + 1, Rd+i, the neighbors are false if R^+i — Ra is large, or if Rd+i is 

comparable to the overall size of the attractor. The interested reader can consult 

the reference for the mathematical definitions of large and of the attractor size. 
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This reference also analyzes the method for several models and parameter ranges, 

concluding that the technique is quite robust. 

We can see from Figure 3.17 that the two-dimensional Ikeda attractor recon- 

struction, although similar in dynamics to the original attractor, appears to suffer 

from exactly the false nearest neighbor epidemic discussed above. The once indi- 

vidual rings of the original attractor now cross in a complex pattern, which would 

surely confuse any attempt at a Lyapunov exponent calculation. The proper em- 

bedding dimension for the Ikeda attractor has in fact already been calculated by 

the method of false nearest neighbors discussed above [29], and been determined 

to be 4. With this information, we can now turn to a consideration of practical 

largest Lyapunov exponent calculation, and determine a largest exponent for the 

Ikeda map. 

3.4.4    The Practical Lyapunov Exponent 

A simplified calculation of the largest Lyapunov exponent for the Lorenz attractor 

was shown in Section 3.3.3. This technique, however, considered only one pair 

of neighboring trajectories, and therefore did not represent a global property of 

the attractor. Alan Wolf et al. have developed a more practical algorithm which 

essentially follows two trajectories completely around the attractor, so as to obtain 

a more global calculation [25]. 

The algorithm starts by selecting two nearest neighbor trajectories early in 

the time series. One is called the fiducial trajectory, and represents the particular 

trajectory which will be followed throughout the course of the algorithm. The prob- 

lem with observing the long-range separation of the fiducial and its neighbor stems 

from local exponential divergence. The largest Lyapunov exponent characterizes 
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the small scale separation of trajectories with nearly identical initial conditions, 

and long evolution takes the trajectories to large separations (on the order of the 

attractor size), where the Lyapunov exponent no longer accurately models the sep- 

aration. To prevent this, the Wolf algorithm monitors the separation of the fiducial 

trajectory and its neighbor only for a short amount of time (number of iterations 

in the case of a map). The algorithm then replaces the fiducial's neighbor with a 

different, closer neighbor. The new neighbor is selected based upon both its prox- 

imity to the fiducial, and the smallness of the angle it makes with the fiducial and 

the old neighbor. In this manner, the relationship between the fiducial and the old 

neighbor trajectories is retained to the highest accuracy. After such a replacement, 

the evolution of the fiducial and its new close neighbor are monitored for a fixed 

amount of time, at which point the process repeats. 

Before each replacement, the initial and final separation between the fiducial 

and its neighbor trajectory are used to calculate the kth local exponent through 

the relation 

Afc = ^log2|^ (3.18) 

where T is the total time (or number of iterations) since the last replacement. 

This is simply the same estimation of local slope as performed in Section 3.3.3. 

When the entire time series of data has been processed, all of the local exponents 

are averaged to find the global exponent. Since the initial trajectory has been 

monitored throughout the entire time series, this average will converge to the 

actual largest Lyapunov exponent as the time series length —» oo. 

The Wolf code takes several parameters to tailor the calculation to a specific 

data set. First is the minimum initial displacement between neighbors, used to 

prevent selection of neighbors closer than the noise level of the data. Next is the 
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maximum initial displacement between neighbors, to guarantee the selection of 

close neighbors (where "close" is attractor dependent). The evolution time, or 

fixed number of iterations between replacements is also required, and finally, the 

maximum allowable angle between replacements. Wolf et al. have investigated 

how each of these parameters affects the calculation, and found acceptable results 

for large parameter ranges. Generally, results are better with a smaller minimum 

replacement parameter (noise allowing), with a maximum on the order of less than 

5% of the attractor extent, with an angle under 10°, and an evolution time on the 

order of the time it takes for a trajectory to orbit the attractor once. 

Using a version of this Wolf algorithm, I calculated a largest Lyapunov exponent 

for the Ikeda map, using the method of delays described above to reconstruct the 

attractor in four dimensions from Re(z). I specified the minimum and maximum 

initial displacements as 10-5 and 0.20 respectively, or about 0.00025% and 5% 

of the overall Ikeda attractor size (see Figure 3.16). Additionally, I specified the 

maximum angle as 5°, and the evolution time of 12 iterations, since it takes about 

12 iterations to circle the attractor in Figure 3.16. Operating on a time series of 

20,000 points from (3.17), I arrived at the averaged result A = 0.501 bits/iteration, 

which is easily within 5% of published analytical results [26]. 

The calculation of a largest Lyapunov exponent made possible by attractor 

reconstruction, combined with the graphical analysis of bifurcation diagrams, es- 

pecially as applied to the logistic and Ikeda maps in this section, will directly 

translate to the model of the additive-pulse modelocked laser. Chapter 4 will first 

discuss the APM model as a map, then apply the nonlinear dynamics concepts of 

this chapter to analyze the dynamical behavior of the laser under certain parameter 

variations. 



Chapter 4 

Simulated Additive-pulse 

Modelocked Laser Dynamics 

4.1    Typical Operation 

4.1.1    The Additive-pulse Modelocked Laser Model as a 

Map 

The additive-pulse modelocked (APM) laser contains gain, a tuning element, and 

nonlinearity among other things, and is capable of several different, complex types 

of operation. Chapter 2 considered in detail the factors determining the operation 

of this laser, forming a set of equations (2.51) to describe the evolution of a fem- 

tosecond light pulse during one round-trip through the laser. In addition, based 

upon experimental examples of the laser, Chapter 2 calculated the laser parameters 

necessary to achieve the reported stable behavior. 

Like the logistic map of Chapter 3, the APM model (2.51) takes the current 

state of the laser system to the next state.   The state of the laser is recorded 

64 
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as the two counter-propagating pulses a" and a%, and the output of the system 

is described by the output pulse energy. The first system state is given by the 

simulation seed pulse developed in Section 2.5.2 for a\, and 02 = 0. In order to 

implement the model on a computer, the system state can be digitized, and each, 

of a\ and a2 stored in 1024-point vectors. The model was coded in both MATLAB 

and the C programming language, which produced identical results. 

The simulation produced a stable output train of 106 fs pulses, with an output 

power of 104 mW as calculated from the pulse amplitude and the relationships of 

Section 2.5.2. Figure 4.1 shows a typical pulse and its spectrum, with the measured 

pulse duration and bandwidth. The output energy of each pulse is calculated to 

be 6.91 nJ/cm2, which corresponds to 104 mW, given the pulse width and output 

beam radius of 0.245 cm from Figure 2.2. With a time bandwidth product of 0.440, 

the laser produces transform-limited Gaussian pulses [11, p. 334]. These results 

are quite consistent with the design of Chapter 2. 
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Figure 4.1: The Steady-state Output of the Simulated APM Laser 

Although the APM simulations have produced meaningful output, the real 

value of the model lies in its ability to simulate the laser's behavior when design 
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parameters change. This thesis is primarily concerned with nonlinear dynamics, 

and the remainder of this chapter will explore nonlinear issues as the laser param- 

eters change from the designed, stable APM operation. 

4.1.2    Other Steady-state Experimental Observations 

Although the APM laser has been experimentally perfected for many years to 

improve stability, it is inherently susceptible to complex and unstable operation 

due to its large nonlinearity. Other authors have already reported observations 

of period-doubling, quasiperiodicity, and even chaos in actively stabilized APM 

lasers [2, 3]. The femtosecond NaCl laser at Cornell University has verified these 

findings, as shown in Figure 4.2. The period-two behavior is quite pronounced, 

while the irregular behavior in (b) could be either quasiperiodicity or chaos, which 

can only be determined by a difficult analysis of the experimental data. 

(a) 

UuullJW^ 
Time 

(b) 

a 
0) 

3 
OH L) JUUUU JL juy. ■JUL uw JUL JUL JUUUUL- U 

Time 

Figure 4.2: Experimental Instabilities in the APM Laser, (a) shows strong period- 
two behavior and (b) shows an even more complex yet deterministic output 
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While current publications discuss various instabilities in the APM laser, the 

effect of different laser designs has yet to be considered. Specifically, how do 

parameters such as the forward and backward fiber coupling coefficients, fiber 

length, and gain affect the laser dynamics? The APM laser is known to operate 

stably over a large range of parameters, and for this reason has been successfully 

used as a research tool. For example, Figure 4.3 shows the laser output energy 

versus fiber length, for a large range of lengths. Each separate length on the graph 

15 20 

Fiber Length [cm] 

25 

Figure 4.3: APM Output Energy vs. Fiber Length for the Design of Chapter 2 

represents a unique simulation, showing 30 successive output pulse energies. Since 

the graph traces a line, each length considered exhibits stable operation (a constant 

pulse output energy). Despite this stable APM operation however, we will find in 

the remainder of this chapter that, for large regions of parameter space, the laser 

can be quite unstable. 
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4.2    Nonlinear Laser Dynamics 

4.2.1    Quasiperiodicity in the Simulated Laser 

To begin a more involved exploration of parameter space, we can lengthen the fiber 

beyond the study in Figure 4.3. The operation of the APM laser for lengths of 

20-55 cm is shown in a bifurcation diagram, Figure 4.4. Beyond I ~ 27 cm, the 

output pulse energies begin to exhibit a large spread of values. To determine the 

nature of these variations, we can examine the evolution of the laser output pulse 

energies, shown in Figure 4.5. The output energies follow a sinusoidal path, with 

a period of about 20.5 iterations. 

By creating a two-dimensional delayed-coordinate system as described in Chap- 

ter 3, we can observe the phase portrait of the output. Figure 4.6 shows the 

resulting closed loop, which indicates periodicity in addition to the fundamental 

(period-one) oscillations. The loop is continuous because the secondary oscillation 

frequency is not a multiple of the fundamental frequency. In other words, the two 

frequencies are incommensurate, and the laser is thus exhibiting quasiperiodicity. 

This type of plot, because it shows the n versus the n + ll iteration, is often 

called a first return map, or a Lorenz section. A first return map, depending upon 

its complexity, can give information about the output dynamics, especially relating 

to prediction of future states. Figure 4.6 shows that the laser output is confined to 

a single loop in phase space for all time. The topologically linear orbit indicates a 

lack of fractal dimension, or equivalently, a lack of chaotic oscillations in the laser 

output. 

If we examine sections of the APM output for the even longer fiber lengths 

displayed in Figure 4.4, we find that the output remains quasiperiodic, but the 
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phase-space orbit gradually deforms into more complex shapes. Figure 4.7 shows 

this trend, for lengths of 30, 40 and 50 cm. 
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Figure 4.7:  Quasiperiodicity in the APM Output for 3 Different Fiber Lengths: 
(a) I = 30 cm (b) I = 40 cm and (c) I = 50 cm 

4.2.2    Period-doubling and Chaos in the Simulated Laser 

With a large amount of experimental effort devoted to studying the additive-pulse 

modelocked (APM) laser, several improvements have been made, especially relat- 

ing to fiber coupling. In particular, Yakymyshyn et at. reported that the main- 

to-external round-trip cavity coupling coefficient (i.e., the beamsplitter and fiber 

couplings, each taken twice) was typically ~ 0.2. Currently, however, forward fiber 

couplings have been increased to ~80% with ball lenses and telescope configura- 

tions. Together with a beamsplitter reflectivity of 70-90% and fiber back-coupling 

of 90%, the total coupling coefficient can be as great as 0.68. Even modest in- 

creases in the coupling can have dramatic effects in the laser dynamics, since the 

coupling directly affects the amount of nonlinearity in the APM system. 

With this in mind, we can again use the simulation developed in Chapter 2, but 
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with the fiber couplings increased: 7 = 0.8, and 72 = 0.9. Increasing the coupling 

will affect overall laser performance, primarily by reducing the saturated gain, since 

more power will be coupled back from the external cavity into the main. Figure 4.8 

shows the resulting bifurcation diagram for the laser with larger coupling, which is 

just a plot of output pulse energy versus fiber length, as in Figure 4.3. With these 

new couplings we see a bifurcation to period-two behavior at a fiber length of ~ 9 

cm. Beyond this, each branch further period-doubles into a chaotic regime, to be 

verified in Section 4.2.3 by a Lyapunov exponent calculation, as performed for the 

Lorenz system and the logistic map in Chapter 3. 

Before such a calculation, it is informative to examine the exact nature of the 

period-two pulse solutions. The bifurcation diagram shows both low and high- 

energy pulses at the output. Iterating the model at a period-two fiber length, 

say 10 cm, we can examine successive pulses in the main and external cavities 

(the output is just the external cavity pulse b2, scaled by the beamsplitter: see 

Figure 2.6). Figure 4.9 shows that the pulses in the main cavity alternate between 

high and low energies, in perfect antiphase with those of the external cavity. The 

two cavities in fact exchange some set amount of energy each round-trip. One 

may also note that the external cavity pulses contain much structure, quite unlike 

the picture presented by Figure 4.2. This is caused by nonlinear phase chirp and 

interferometric recombination of pulses, as opposed to a mere amplification process. 

The experimental data from Figure 4.2 is collected by a laboratory detector, which 

cannot possibly resolve a 100 fs pulse, but rather integrates the pulse intensity and 

provides output proportional to the pulse energy. As a result, laboratory time 

series data can yield only a single number to characterize each pulse, while the 

simulation in this thesis gives more evidence to the underlying dynamics. 



73 

IM 

+= 
3 

o ex 
CN +2 

O 

O 

o 

c6 
oo 

io
n 

D
ia

gr
am

 
=
 0

.9
 

«o s 1   £ 
^ 

60 
C .    oo 

SH 

hJ Cü    O 
*-i ^      II 

X! 
1—t &H 

ub
lin

g 
A

PM
 

le
ng

th
, 

fo
r 

o 

F
ig

ur
e 

4.
8:
 A

 P
er

io
d-

D
o 

pu
ls

e 
en

er
gy

 v
er

su
s 

fi
be

r 

o LO o lO o in 
lO ■^r n< CO CO c-3 

uio/fu] ÄSaaug asinj ^nc^no 



74 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

a, 
£ 

< 

10-r 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

Figure 4.9: Period-two Pulses in the main (upper row) and external (lower row) 
APM cavities, for 5 successive iterations with a fiber length of 10 cm 
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Figure 4.10 shows a magnified view of the complicated APM bifurcations above 

I ~ 15.85 cm. Beyond the initial period-doubling and chaos, the magnified diagram 

shows that the output suddenly displays period-2 output again, at a length of 

~ 16.3 cm, which then immediately bifurcates to period-8. The laser proceeds to 

period-double into another chaotic regime, around I ~ 16.7 cm. Beyond this, the 

chaotic regime abruptly changes size, and then reverse bifurcates back down to 

period 4. The abrupt changes in the bifurcation diagram are in fact crises, and 

will be explained and explored in more detail in Section 4.2.4. Additionally, the 

chaotic regions of Figure 4.8 will all be studied and verified by Lyapunov exponent 

calculations in Section 4.2.3. 

4.2.3    Chaotic APM Behavior 

Above a fiber length of about 15.85 cm, the laser exhibits very unstable behavior, 

which, from Figure 4.8 cannot be distinguished as either quasiperiodicity or chaos. 

There are in fact three separate regions on the bifurcation diagram which appear 

to exhibit large instabilities: I «15.9-16.3 cm, I «16.67-16.76 cm, and I «16.83- 

17.12 cm. To verify the existence of chaos, we can perform a largest Lyapunov 

exponent calculation in each region, as done for the logistic map in Section 3.4.4. 

If the largest Lyapunov exponent is > 0, we can conclude that these regions indeed 

exhibit a sensitive dependence on initial conditions, and are therefore chaotic. 

Since the Wolf algorithm described in Section 3.4.4 requires a reconstructed 

attractor to calculate an exponent, we first calculated the proper embedding di- 

mension for the APM attractor in each of the three regions, using the false-nearest 

neighbor technique described in Section 3.4.3. The Abarbanel code showed that 

the proper embedding dimension is 3 in each case, as seen in Figure 4.11, since the 
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number of false-nearest neighbors drops to zero for 3 dimensions. 
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Figure 4.11: Embedding Dimension Calculation for Chaos in Figure 4.8 

Knowing the proper embedding dimension, we reconstructed each region's at- 

tractor in three dimensions, using the delayed coordinate technique of Section 3.4.3. 

We first set the fiber length in the unstable region, then preiterated the APM model 

several thousand times to let any initial transients die out. Next, we iterated the 

APM simulator 32,000 times and recorded the output energies, generating a long 

output time series. Plots were then constructed by creating the delayed coordi- 

nates from the output time series: the nth iterate, versus the n+ 1th iterate, versus 

the n+2th iterate. The results are shown in Figures 4.12-4.19, for each of the three 

chaotic regions shown in Figure 4.10. The first two chaotic regions, at I ~ 16.2 

cm and I ~ 16.7 cm, each have two branches, due to the underlying period-two 

behavior (see the larger view in Figure 4.8). For this reason, there are two distinct 

attractors for each of these regions, shown in Figures 4.12-4.15. The third chaotic 

region, at / ~ 16.8 cm, likewise has four branches and therefore four distinct at- 

tractors, shown in Figures 4.16-4.19. Each attractor is easily visualized in three 

dimensions, which verifies the previous embedding dimension calculations. 
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Having reconstructed these attractors, we performed a largest Lyapunov calcu- 

lation for each region. The Wolf code processed the each reconstructed attractor 

with a minimum initial displacement of ~ 10~5 and a "largeness" condition on the 

final displacement of ~ 10~2, thus allowing initial trajectories to diverge by three 

orders of magnitude before calculating local exponents. The computed average 

largest Lyapunov exponents were all positive, indicating that each region indeed 

exhibits chaos. Table 4.1 summarizes the largest Lyapunov exponent calculation 

for each region. We should also keep in mind that the largest exponent can vary 

Table 4.1: Largest Lyapunov Exponents for APM Chaos 

Region 1: I = 16.258 Region 2: I = 16.71 Region 3: I = 16.722 
Ai [bits/sec] A2 [bits/sec] A3 [bits/sec] 

0.24 0.14 0.15 

within each chaotic region of the bifurcation diagram, since each new fiber length 

describes a different system. 

As done in Section 4.2.2, we also observed the main and external cavity pulse 

structure for chaotic APM operation, around / ~ 16.25. Figure 4.20 shows the 

complex structure across the peak of the pulses. In fact, comparing this figure with 

Figure 4.9, we notice that the chaotic pulses also alternate between high and low 

pulse amplitudes, because the chaotic regions are still two, separate branches on the 

bifurcation diagram. In contrast to the period-two case where every second pulse 

is identical, all of the pulses in the chaotic region are different, reflecting chaotic 

pulse structure. Conclusively demonstrating that these pulses indeed have chaotic 

structure would of course involve further careful analysis of the pulse envelope 

evolution with time. 



87 

> 

3 

a 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

-200     0     200 
Time [fs] 

Figure 4.20:   Chaotic Pulses in the main (upper row) and external (lower row) 
APM cavities, for 5 successive iterations with a fiber length of 16.25 cm. 
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4.2.4    Routes to Chaos 

In discovering the phenomena of chaos in the APM laser, we must take a moment 

to think about the underlying dynamics which lead to this behavior. The means 

by which a system changes from a stable cycle to chaos is termed the route to 

chaos, and is one of the more fundamental properties of chaotic systems. As more 

and more scientists explore the nonlinear dynamics of systems, certain trends have 

begun to emerge. Four common routes to chaos have been identified and studied 

in real systems: 

1) Period-doubling: the most commonly encountered route, where a period-one 

cycle bifurcates into period-two, four, eight, etc. before exhibiting chaos. 

This is the route encountered in the logistic map, seen in Figure 3.14. Each 

period-doubling involves the destabilization of the single state, concurrent 

with the emergence of two, new stable states, a process known as a pitchfork 

bifurcation (see Section 3.2 for a discussion of bifurcations). Thus, the system 

continues to period-double up to period-oo, which is essentially aperiodic 

(chaotic). 

2) Intermittency: this is a process where, as the bifurcation parameter moves 

close to the chaotic regime, short bursts of chaos begin to repeatedly appear 

in the system output. Note that the system has not yet entered the chaotic 

region, nor has the output become completely chaotic. One can visualize a 

trajectory moving about on a periodic orbit in phase space, where a chaotic 

attractor is nearly stable. As the trajectory's orbit happens to wander close 

to the chaotic "ghost attractor," the trajectory may in fact be repeatedly 

pulled onto the attractor for a few cycles before escaping back onto the 

stable limit cycle.   In this manner, as the bifurcation parameter is moved 
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ever closer to the chaotic region and the attractor becomes less and less 

unstable, the trajectory will tend to visit the attractor more often and for 

longer intervals of time, thus producing more frequent and longer bursts of 

chaos in the system output. 

3) Quasiperiodicity: a system containing a stable torus defined by two incom- 

mensurate frequencies can destabilize as the nonlinearity is increased, either 

transitioning straight into chaos, or forming a three-torus if another char- 

acteristic frequency becomes involved. In this case certain perturbations 

can destabilize the three torus into chaos. It is also possible with a stable 

quasiperiodic orbit to undergo phase locking (where one frequency is pulled 

to oscillate as a harmonic of the other) as the nonlinearity is increased, before 

transitioning to chaos. 

4) Crisis: this route is characterized by a sudden change in the system's at- 

tractor, especially where the sizes of the attractor before and after the crisis 

are disparate. As an example, considering the logistic map of Figure 3.14 

near r = 4. For r < 4, the system rests on a stable chaotic attractor, while 

for r > 4, the orbit stays within [0,4] for a few cycles, then falls toward 

—oo. Thus, moving the parameter r across the value 4 from above causes 

the abrupt convergence to a stable chaotic attractor. In a similar manner, 

from the same figure we see the stable period-three window first period- 

double, then transition to three, separate chaotic regions. Just beyond this, 

the three chaotic regions suddenly transition via internal crisis to one, much 

larger chaotic attractor. The main characteristic of a crisis is transient be- 

havior which can be summarized as follows. Even though a chaotic attractor 

destabilizes after a crisis, the system trajectory will remain on this attractor 
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for some finite number or orbits before moving to the new stable fixed point, 

limit cycle, or attractor. In other words, the system will exhibit a chaotic 

transient before settling onto the new, stable orbit. 

Although these four routes have been identified and studied, they are by no 

means an exhaustive list of possible transitions to chaos. They merely serve to 

provide models for transitions in real systems, which quite often exhibit varied 

combinations of all the known routes. 

In considering the APM laser bifurcation diagram of Figure 4.10, the initial 

period-one behavior is followed by an cascade of period-doubling bifurcations, and 

the laser thus follows the period-doubling route to chaos, much like the logistic 

map in Figure 3.14. In the middle of the first chaotic region, around a fiber length 

of 16 cm, we can also see a region of period-three behavior, again like the logistic 

bifurcation diagram. 

Around a fiber length of 16.3 cm, the laser output suddenly drops from chaos 

into period-two behavior. The drastic change (disappearance) of the attractor 

would indicate a crisis, and further proof can be obtained from a time series of the 

output. Figure 4.21 shows three versions of an attractor reconstructed from 32000 

iterations of the APM simulator with a fiber length of 16.3 cm. The simulator was 

preiterated 1000 times before recording output values. Plot (a) shows three-space 

reconstructed from 16000 output energies, which looks just like the chaotic attrac- 

tor of Figure 4.12. Plot (b) is the same as (a), with the first 1250 iterations of the 

time series removed from the plot, yielding a much more "sparse" attractor. Plot 

(c) is also the same as (a), with the first 2500 iterations of the time series removed, 

revealing the correspondingly small cluster of periodic behavior present beyond 

the crisis.  The initial chaotic orbits in Figure 4.21 comprise a chaotic transient. 
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Figure 4.21: Chaotic Transient in the APM Output Near / = 16.3 cm: (a) shows 
iterations 1-16000, (b) shows 1251-16000, and (c) shows 2501-16000 
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Combined with the sudden change in the bifurcation diagram of Figure 4.10, this 

chaotic transient offers strong proof that the transition at I = 16.3 cm is indeed a 

crisis. 

In a similar manner, the bifurcation diagram of Figure 4.10 displays another 

abrupt change, or crisis in dynamics around I = 16.72 cm. Figure 4.22 shows a 

reconstruction of a laser output time series for I = 16.72 cm, after 4000 preitera- 

tions. In plot (a) we see three co-existing attractors, representing a reconstruction 

of 12000 simulator iterations. These three attractors are from both sides of the 

crisis transition, and look the same as those in Figures 4.14, 4.16, and 4.17. In plot 

(b) the first 4000 iterations have been omitted, and the middle unstable attractor 

looks more sparse. In plot (c) the first 8000 iterations have been omitted, and 

the middle attractor has disappeared completely. This transient chaos provides 

reasonable proof that the transition at I = 16.72 is a crisis. 

Identification of the period-doubling route to chaos in the APM laser is a sig- 

nificant finding in the characterization of the system. Currently, there are no 

published results exploring the route in detail for the APM configuration, nor are 

there any studies providing evidence of crises. Although more work must be done 

to conclusively verify the findings of this thesis, the results presented here represent 

the first theoretical characterization of the APM laser dynamics. 

4.3    Exploring Parameter Space 

4.3.1    Fiber Coupling Variations 

In varying the fiber coupling in the APM laser, we managed to create enough 

nonlinearity to cause a system bifurcation with increasing fiber length. The fact 
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2.9 

Figure 4.22: Chaotic Transient in the APM Output Near / = 16.72 cm: (a) shows 
iterations 1-12000, (b) shows 4001-12000, and (c) shows 8001-12000 
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that period-doublings occur when the fiber couplings are varied indicates that the 

fiber length is not the only bifurcation parameter. We can run the simulation 

varying both 71 and 72 equally, while holding a fixed fiber length of 15 cm. Fig- 

ure 4.23 shows the results of this simulation, where the laser indeed bifurcates as 

the couplings are increased. 

This bifurcation diagram looks very similar to the fiber length bifurcation dia- 

gram of Figure 4.8. Figure 4.24 shows a magnification of the period-doubling and 

chaotic regimes. The period-doubling and crises in the fiber coupling diagram oc- 

cur just as for the fiber length bifurcation diagram, and the only major difference is 

the unstable region beyond the second crisis at 71 = 0.315. Rather than exhibiting 

period-four, this region only shows underlying period-two, and additionally does 

not reverse bifurcate back to a stable periodic orbit. 

Performing the same analysis on this chaotic region (71 > 0.315) as those in the 

fiber length bifurcation diagram, we see in Figure 4.25 that the Abarbanel false- 

nearest-neighbor algorithm requires a four-dimensional embedding dimension. 

Even though the proper embedding dimension is four, there are only a small 

amount of false neighbors for three dimensions, and we can therefore reconstruct 

the attractor in three dimensions for a rough visual comparison to those in Fig- 

ures 4.12-4.19. Figures 4.26 and 4.27 show the results of the three-dimensional 

reconstruction. 

In order to confirm that this region is indeed chaotic, we can also use the Wolf 

algorithm to determine the largest Lyapunov exponent, as in Section 4.2.3. Using 

an attractor reconstructed in four dimensions, a minimum initial displacement of 

~ 10~5 and a "largeness" condition on the final displacement of ~ 10-2, the Wolf 

code produced a largest exponent of A = 0.31 bits/sec.  This positive exponent 
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Figure 4.25:  Embedding Dimension Calculation for Chaos in Figure 4.23, 71 > 
0.315 

indicates that the region is indeed chaotic. 

4.3.2    Gain Variations 

In light of Figure 4.23, we might well wonder what other parameter variations 

cause changes in the APM laser dynamics. Gain is perhaps the next most obvious 

candidate. Figure 4.28 shows a bifurcation diagram for the APM laser under vari- 

ation of the model parameter Go, which is proportional to the pumping intensity 

of the laser system. The fiber length is fixed at 20 cm, and the fiber couplings are 

7i = 0.5 and 72 = 0.6, corresponding to the,small-coupling regime we studied for 

fiber length bifurcations in Section 4.2.1. 

This diagram exhibits the same quasiperiodic region as the fiber length bifur- 

cation diagram of Figure 4.4. Figure 4.28 has a much more positive slope, simply 

because the gain more strongly affects the output energy of the laser. Figure 4.29 

shows 3 quasiperiodic return maps, for small signal gain values of 2.5, 2.6, and 2.7. 

The only new feature in Figure 4.28 is the collapse of the quasiperiodic region, 
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Figure 4.29: Quasiperiodicity in the APM output for 3 different small-signal gains: 
(a) G0 = 2.5 (b) G0 = 2.6 and (c) G0 = 2.7 

giving way to stable period-one behavior at high gains. 

Similar to the fiber length bifurcation diagrams, the gain bifurcation diagram 

will produce drastically different dynamics when we increase the fiber couplings. 

Figure 4.30 shows the gain bifurcation diagram for the increased fiber couplings, 

7i = 0.8 and 72 = 0.9, and a fiber length of 7 cm. Again, the gain diagram produces 

results almost identical to those of the fiber length bifurcation diagram in Figure 4.8 

for increased couplings. The laser output first period-doubles into chaos, falls back 

to period-two with a crisis, again period-doubles into chaos, transitions to a new 

chaotic region with another crisis, then finally reverse bifurcates back to period- 

two. Figure 4.31 shows a magnified view of the bifurcating region of Figure 4.30. 

Figures 4.30, 4.23, and 4.8 demonstrate some of the variations of the APM 

laser under limited parameter variations. The APM laser has a multi-dimensional 

parameter space (see the model development of Chapter 2), and variations in most 

of these parameters are strongly coupled. Indeed, the fiber length, coupling, and 
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the laser gain all affect the nonlinearity, although some more directly than others. 

By varying only these three parameters, the laser has conclusively demonstrated 

quasiperiodic behavior, the period-doubling route to chaos, and crisis transitions. 

This thesis represents the first identification of the period-doubling route in the 

APM laser, and the first verification of true crisis behavior. A more detailed study 

of these and other parameter variations can and will undoubtedly be performed, 

although this will require an immense amount of time and memory in computer 

simulations. 



Chapter 5 

Conclusion 

5.1    Model Limitations 

The model developed in Chapter 2 and analyzed in Chapter 4 can be a very- 

powerful tool for APM laser design, especially as applied to the avoidance or en- 

hancement of chaotic behavior. As with any numerical model, however, we should 

be aware of some of the limitations. 

First of all, certain physical effects were completely omitted from the model, 

and could modify operation if considered. These include the following: 

1) Gain Saturation: although gain saturation analysis was performed in Chap- 

ter 2, only a pulse-averaged saturation was included in the numerical model, 

mainly because time-dependent saturation will cause the pulse to "walk for- 

ward" in time. This was avoided as it would require the extra time-consuming 

step of repositioning the pulse in the center of the array window every several 

iterations. The time-dependent saturation should only serve to slightly dis- 

tort the pulse shape however, and cause some asymmetry in the simulation 

results. 

105 
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2) Dispersion: dispersion was not explicitly included in the model since the 

optical fiber used in experimental systems is generally dispersion-shifted. A 

more rigorous approach could include the small dispersion contributions from 

the laser optics as well as the NaCl crystal and higher-order dispersion in the 

fiber, or even the more general case of non-dispersion-shifted fiber. 

3) Sync-pumping: in many APM lasers, the gain medium is sync-pumped, which 

means that the pump laser which supplies energy to the gain crystal is itself 

mode-locked so as to provide gain only for small intervals of time, thereby 

encouraging modelocking simply through gain modulation. This type of 

system requires that both of the APM laser cavities be exactly matched in 

length to the pump laser cavity, so that the pulses in the APM laser will 

pass through the gain coincidentally with the pump pulses. Although this 

is a common APM laser design,/many researchers are moving toward self- 

starting APM operation [30], which uses a CW pump, as modeled in this 

thesis. In addition, commercially available mode-locked lasers in the 1.06 

ßm region yield fairly large (~ ps) pulses, which, on the time scale of a 100 

fs APM pulse, is only a small perturbation to a CW gain. 

Approximations and omissions notwithstanding, the model parameters must 

be constrained within certain limits to avoid erroneous simulation behavior. Two 

particular situations involve an overly large external cavity pulse bandwidth, re- 

sulting from very high levels of nonlinearity (long fiber length, high fiber coupling, 

large laser gain). In the first case, the fraction of laser pulses which circulates 

in the external cavity experiences a cumulative increase in pulse bandwidth from 

multiple passes through the fiber. Since only a small component of the external 

cavity pulses actually couples back into the main cavity to be bandwidth-limited 
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by the tuner plate, some percentage of the chirped pulses will immediately cir- 

culate back into the fiber and experience more phase chirp. If the fiber coupling 

and length are large enough, this repeated phase chirp can cause an increase in 

pulse bandwidth beyond 100 THz. In the time domain, this corresponds to oscilla- 

tions on the order of the optical carrier frequency (187.5 THz), at which point the 

distinction between the optical wave and its envelope becomes blurred; i.e., the 

situation is non-physical. Worse yet, the center (peak) of the pulse envelope can 

become extremely narrow, to the point of being represented by a single sample in 

the numerical simulator, as shown in Figure 5.1. In this case, aliasing has occurred, 

c a 

Time Time 

(b) 

Time 

Figure 5.1: Simulator Pulse Discontinuity Due to Extreme Bandwidth. The central 
portion of a pulse from the APM simulations shows progressively worse compres- 
sion in (a) and (b), and the resulting discontinuity in (c) 

and the discontinuous pulse envelope results in a drastically altered pulse integral 

(energy). Thus, the simulator displays a marked discontinuity in the bifurcation 

diagram, as shown in Figure 5.2. 

Experimentally, this situation should never arise, because other optical com- 

ponents would prevent the pulse bandwidth from growing too large. For example, 

a typical high reflector in the external cavity has the wavelength profile shown in 
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Figure 5.2: Discontinuity in the APM Simulation Output 

Figure 5.3. The high reflectivity region reflects a typical bandwidth of only about 

1400 1500 1600 1700 1800 1900 

Wavelength [nm] 

Figure 5.3: A Typical NaCl High Reflector: the solid curve represents the response 
of an actual NaCl laser mirror scanned with a spectrophotometer, and the dashed 
curve is the filter function used in the numerical simulations 

400 nm. A simple combination of error functions, 

M(A) = {Erf [a(c/X -v0 + 6v)} + 1} {-Erf [a(c/X - i/0 - 6v)\ + 1} /4      (5.1) 

can easily approximate this mirror transmission, as shown by the dashed curve of 

Figure 5.3.  In (5.1), 8v is the half-width at half-maximum (HWHM), u0 is the 
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center frequency, and a is a constant related to the steepness of the mirror profile 

(in Figure 5.3, a = 50). The dashed filter of Figure 5.3 was in fact applied to the 

external cavity in the simulations of this thesis to prevent the runaway of pulse 

bandwidth. This "mirror" filter was centered at 187.5 THz with a FWHM of 45 

THz (which corresponds to ~400 nm of bandwidth), positioned in the external cav- 

ity after the fiber, and numerically implemented just as the filters of Section 2.4.2. 

With the addition of this filter, the simulations showed no indication of abnormal 

accumulated bandwidth, and the pulseshapes as well as the bifurcation diagrams 

showed no discontinuities. 

The second case involving an overly large external cavity bandwidth results 

from the nature of the iterative model (2.51). The total accumulated phase chirp 

from one pass through the fiber is applied to the pulse in a single multiplication. 

Since the amount of phase chirp scales with the nonlinearity appearing in the 

exponent of (2.51), very high nonlinearity can result in multiple-7r of phase across 

the pulse. One pass through the fiber could conceivably produce enough phase 

to again cause oscillations on the order of the carrier frequency, and thus aliasing 

in the simulation. This situation is different from the first case considered above, 

because the nature of the iterative model does not allow for bandwidth limitation 

within the fiber, and the mirror filter will therefore not correct the problem. 

The solution in this case is to provide a detection mechanism for the overly large 

one-pass bandwidth. We can compare the pulse's spectral content before and after 

filtering with the external cavity mirror, and look for significant differences. This 

involves simply taking the fft of the pulse before and after mirror filtering, and 

signalling an error when the integral of the filtered pulse spectrum varies from the 

unfiltered by more than 10%. With this check, all simulations can be kept within 
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the limits of "reasonable" bandwidth, meaning that no pulse acquires frequency 

components greater than 100 THz. 

Without the bandwidth limiting measures described above, the APM simulator 

can produce drastically erroneous results, as shown in Figure 5.4. Results nearly 

20 25 30 

Fiber Length [cm] 

Figure 5.4: Erroneous Dynamics in the APM Bifurcation Diagram 

identical to Figure 5.4 have actually been reported in past literature [2], and are 

most likely an artifact of overly large bandwidth. 

5.2    Future Directions 

5.2.1    Model Variations 

Chapter 4 considered several parameter changes for the APM numerical simula- 

tions, but several more could be studied in the future. Of particular interest is the 

static phase mismatch, $0, between the main and control cavities. This parameter 

has historically been used for the active stabilization of the APM laser, since the 

cavity mismatch can be directly monitored by the average power in the control 
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cavity [31]. The phase mismatch would be an interesting parameter to vary, since 

it perturbs the control cavity power with a sinusoidal dependence. It also has 

the attractive property of being a readily variable parameter in the laboratory. 

Other researchers have examined the effects of varying a similar parameter for a 

passive ring resonator, and found behavior much like the fiber coupling bifurcation 

diagrams in Section 4.3.1 [32]. 

Other aspects of the APM laser simulations could also be changed, to explore 

more laser dependencies. Focusing in the gain crystal should have a strong effect 

on the laser dynamics, since this would affect the amount of saturation, and there- 

fore the overall pulse energy within the main cavity. Even different configurations 

for the APM laser, such as the Michelson Interferometer scheme, could be explored 

with few modifications to the model. Finally, several hypothetical cavity config- 

urations could be considered, to test the dynamics before spending the time and 

money necessary for an experimental effort. 

5.2.2    Experimental Possibilities 

Experimentally, the findings of this thesis present a large arena for research. First, 

verification of the different APM dynamics found in Chapter 4 presents an im- 

mediate area for study. Others have already begun to explore APM dynamics 

experimentally [2, 3], but no effort has been made to construct a bifurcation di- 

agram, or explore actual output pulse profiles for period-two or larger behavior. 

Bifurcations with all the different laser parameters studied in this thesis should 

also be considered, and eventually, some of the routes to chaos verified experimen- 

tally. In addition, fiber couplings above the current experimental limits could be 

explored, perhaps by a different cavity design which could feature only a single 
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pass through the fiber. 

Another direction for research is exploration of dynamical operation of the 

APM laser when mode-locking is assisted by a saturable Bragg reflector (SBR). 

An SBR consists of several quarter-wave layers of semiconductor, to form a Bragg 

stack high reflector. In the top layer, one or more quantum wells resides, with a 

band edge very near the desired lasing wavelength. Essentially, this top layer is 

a saturable absorber, which acts as loss for normal cavity intensities, but favors 

short, high-intensity light pulses which can quickly saturate the absorption, and 

reflect without loss. With this type of mirror in the cavity, several researchers have 

achieved a very robust, self-starting mode-locking [33]. In fact, when an SBR was 

used as a secondary element in a regeneratively mode-locked Ti:Sapphire laser, 

reproducible self-starting behavior was reported [34]. Generally, the SBR so favors 

pulsed behavior that mode-locking is stable for a greater range of parameters. 

This technique could be applied to the APM laser, which has historically required a 

feedback loop to achieve stable mode-locked behavior. With an SBR as a secondary 

element, the APM laser may mode-lock for a wider range of parameters, or even 

display greater stability for the current parameter ranges. In either case, the study 

of nonlinear APM laser dynamics could greatly benefit from a larger accessible 

parameter space. 

Beyond the study of the APM laser, efforts should be made to control the 

dynamics for some useful purpose. In 1990, Edward Ott et al. explained how 

to control unstable periodic orbits within a chaotic system [35]. Since a typical 

chaotic attractor contains an infinite number of unstable periodic orbits, with the 

proper control, one could exploit any one of these orbits with a small perturbation, 

thus making a single system capable of many different types of output. The idea 
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behind such control involves reconstructing an attractor as per Section 3.4.3, then 

locating a desired periodic orbit (in the case of a map, this would be equivalent to a 

fixed point for period one, or a fixed set of n points for period-n). Next, one creates 

a set of linearized equations in the neighborhood of the fixed point, by observing 

the shift in the fixed point when a system control parameter is perturbed. Now, 

when the chaotic system trajectory enters a small neighborhood of the desired fixed 

point, one perturbs the control parameter as dictated by the linearized equations to 

force the trajectory onto the stable manifold of the fixed point. For a small enough 

neighborhood, such perturbations are small, and control is readily achieved. 

Since this original proposal, E. Hunt has described a variation called occasional 

proportional feedback (OPF), which involves using a small fraction of the system 

output as feedback to alter the control parameter, whenever the trajectory falls in a 

neighborhood of the desired fixed point [36]. This technique has been successfully 

demonstrated in several systems, electrical and optical [37]. OPF control could 

be directly applied to the APM laser, by using some fast intracavity modulator 

(such as an electrooptic cell) to alter the trajectory based upon feedback from the 

output. Even more recently, Glorieux et al. proposed a method of control based 

upon delayed continuous feedback [38], which could be applied to the APM laser 

by an simple, small reflection of the output back into the APM cavity. 

Control of the APM laser would first require that the laser experimentally 

exhibit chaotic output. This thesis presents a detailed model which will hopefully 

make design of the laser with chaotic dynamics in mind possible. Such control 

techniques, if successful, would result in an APM laser capable of a much larger 

range of output, in regions of parameter space where stable output was previously 

impossible. 



Appendix A 

ABCD Analysis of the NaCl 

APM Cavity 

To analyze the main laser cavity of Figure 2.1 with the dimensions specified in 

Figure 2.2 b, we can use ABCD matrix formalism as applied to laser oscillators [39, 

pp. 130-137]. First, to determine the cavity stability, we create a ray matrix for 

each element, then multiply these individual matrices in the order of a unit cell to 

arrive at a cavity matrix. Starting from the output coupler (far left) of Figure 2.2 b, 

we have 

x 
(A B) A äA 

y°   l I 

A äA 

y°   1 , 

(   1     0^ 

(  1    o] 

(  1     A    \ 1   d2 

A dA 

y"   !y 

[  l    °1 
(   1     0^ 

A dA 

y°   l l 
( 1     A    \ 1   d\ 

V°    1  J 

(A.l) 

where d\ is the distance from the output coupler to the left lens, d2 is the distance 

between the lenses, d^ is the distance from the right lens to the pump mirror, and 

/ is the focal length of the lenses. The small effect of the NaCl index of refraction 

on the distance d2 has been omitted for simplicity. 
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Carrying out this matrix multiplication (from right to left), we arrive at 

( 2dxd\d3 - 2d2f(dxd2+ ^ 

4did3 + d2d3)+ 2[dxd2 - /(2di + d2)+ 

2f2(3d1d2 + 4+ f2][dxd2d3 - f(dxd2+ 

4d1d3 + 3d2d3)- 2d1d3 + d2d3) + f2{d1+ 

4f(d1 + d2 + d3) + f d2 + d3)] 
(A  B^ 

C   D 

1 

T4 

2dxd\d3 - 2d2f(d1d2+ 

4did3 + d2d3)+ 

2f2(3d1d2 + d2
2+ 

4dxd3 + 3d2d3)- 

V 4f(d1 + d2 + d3) + f* j 

The ABCD stability condition for laser oscillators is 

A + D   <1 

2(d2-2/)x 

(d2d3 - d2f- 

2d3f + f) 

(A.2) 

(A.3) 

Given the values dx = 120 cm, d2 = 10.003 cm, and d3 = 57.497 cm from Fig- 

ure 2.2 b, this becomes 

0.959975 < 1 (A.4) 

so the cavity is stable. 

In order to determine the spot size throughout the cavity, we can examine the 

beam waist of a propagating zeroth-order Gaussian mode. The gaussian beam 

parameter, q, is defined as 

q(z) = z + jz0 (A.5) 

where ZQ is called the confocal parameter and defined as 

z0 = 
irnwt 

1* 
o (A.6) 
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The Gaussian beam parameter relates to the physical radius and curvature of the 

Gaussian beam as 

1 
-3- 

Ao (A.7) 
q(z) R(z) -KTIW

2
{Z) 

where R(z) describes the beam curvature, and w(z) represents the beam waist, 

for any distance z in free space. Prom (A.7), we can obtain an expression for the 

beam waist, 

w2{z) = wl 1 + 
X0z 

irnWi o, 
(A.8) 

(A.8) describes the beam waist at any position z in free space, given the minimum 

beam waist, WQ, which is just the waist at z = 0. 

ABCD matrix formalism can be applied to Gaussian beam propagation [39] 

through 

q(zm) = 
Aq(zm) + B 

(A.9) 
Cq(zm) + D 

where q(zm) is the Gaussian beam parameter evaluated at z = zm, just to the left 

of the first element of the unit cell used to calculate (ABCD). This equation can 

be simplified by solving for q, 

0   =   Cq2 + q(D-A)-B 

q  = 
A-D\^y/(D-Ay + 4BC 

2C 
A-D 

2C C 

2C 
D-A^2 I 1/2 

+ BC 

(A. 10) 

(All) 

(A.12) 

Using the fact that AD — BC = 1 and organizing q into real and imaginary parts, 

we obtain 

A-D 
±3- 

l-(4fß)S 
1/2 

Zm + JZ6 (A.13) 
2C   J     J C 

The real and imaginary parts of (A.13) determine zm, the location of the minimum 

beam waist relative to the first element of the unit cell (since z = 0 describes the 
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position of the beam waist), and z0, which contains the minimum beam waist 

value, w0. 

Thus, the beam waist can be determined for any space dn within the APM 

cavity as follows. We calculate the AB CD matrix for a unit cell starting with dn. 

We next use (A.6) and (A. 13) to determine the nearest minimum beam waist and 

its value. The spatially-shifted version of (A.8), 

w2{z) = w\ 1 + 
'\Q(Z- Zm) 

v    nnwl 
(A. 14) 

where zm is the location of the nearest minimum beam waist as determined from 

(A. 13), can then be used to determine the beam waist everywhere within dn. By 

applying this type of evaluation to each space di~d3 within the APM cavity, we 

arrive at the spot size plot of Figure 2.2 a. 
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